1

Preference Elicitation and Generalized Additive Utility

Darius Braziunas
Department of Computer Science
University of Toronto
Toronto, ON M5S 3H5
darius@cs.toronto.edu

Abstract

Any automated decision support software must tailor its
actions or recommendations to the preferences of differ-
ent users. Thus it requires sorrepresentatiornf user
preferences as well as a meansbiting or otherwise
learning the preferences of the specific user on whose be-
half it is acting. While additive preference models offer
a compact representation of multiattribute utility func-
tions, and ease of elicitation, they are often overly re-
strictive. The more flexible generalized additive inde-
pendence (GAl) model maintains much of the intuitive
nature of additive models, but comes at the cost of much
more complex elicitation. In this article, we summarize
the key contributions of our earlier paper (UAI 2005): (a)
the first elaboration of the semantic foundations of GAI
models that allows one to engage in preference elicitation
usinglocal queries over small subsets of attributes rather
thanglobal queries over full outcomes; and (b) specific
procedures for Bayesian preference elicitation of the pa-
rameters of a GAl model using such local queries.
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Much work in decision analysis, economics, marketing
and Al has dealt with the problem of preference elicita-
tion, but challenges remain. One of the most pressing is
the ability to handle large, multiattribute outcome spaces.
Specifically, when outcomes in a decision problem are de-
fined as instantiations of a set aftributes (e.g., the rel-
evant factors influencing the desirability of a flight in the
scenario above), the exponential size of the outcome space
makes both representation and elicitation of preferences dif-
ficult. Factored utility models, which decompose prefer-
ences into more manageable components by making indepen-
d]ence assumptions, can help overcome both difficulfies
6].

Additive modeldorm a specific class of factored models
that is used widely in practice: one assumes that the strength
of preference for the values of one attribute can be expressed
independently of the values of others (e.g., a delay of one hour
equally despised whether or not your bags are lost). Addi-
tive models allow not only concise representation of a utility
function, but can beslicited using almost exclusiveljocal
queries These ask a user for her strength of preference for
each attribute in isolatiomglobal queriegequire comparison

The increased emphasis on computational decision suppast full outcomes. This is significant because a user need only
tools in decision analysis and Al has broughtinto sharp focugnswer queries that relate to the underlying structure of her
the need fomutomated preference elicitatioSuch software  preferences. For example, a user can express preference for
must have the ability to tailor its actions or recommendationgength of flight delay (20 minutes vs. one hour) independently
to the specific needs and preferences of different users; thysg her preference for actual departure time, missed connec-
it requires some means to obtain such preference informajon, lost baggage, and other attributes. This stands in con-
tion. While decision theory presumes that both the dynamtrast with asking a user to compare full outcomes that involve
ics of a decision problem and preferences are known, it ighejoint instantiation of all attributesa cognitively difficult
often the case that the dynamics (i.e., the mapping from agask if more than a handful of attributes are involved.

tions to outcomes) are fixed across a variety of users, with o appeal of additive models is thus considerable. How-
preferences varying widely. For example, in a travel plan-yer the strong independence assumptions required make
ning scenario, the distribution over outcomes associated witf,qiy applicability suspect in many cases. Tgeneralized
choosing a specific flight from Toronto to Boston is the same, yqitive independence (GAModel[6; 1] allows for a sim-

for any user (e.g., the odds of a delay greater than one hoyyy, 4qgitive decomposition of a utility function, but where
arriving during rush hour, losing luggage), but each users, eriapping subsets of attributes are the factors involved

strength of preference for such outcomes can vary Considefyiher than single attributes. This representation is completely
ably. Thispreference bottleneekthe need to obtain individ- ‘?general—it can capture any utility function—yet in practice

uated preference information—is one of the most formidablgs qyite intuitive and natural, and typically yields a compact
obstacles to the widespread deployment of computer-aidegscomposition of preferences. The power of this representa-
decision support systems. tion will be illustrated in the next section.

The GAI model, while offering the same compactness and
naturalness of representation as the much more widely used
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additive model, had not yielded (to date) the same advan2 Multiattribute Utility Models

tages with respect to elicitation. Specifically, no (semantiWe begi ; o ;

P gin by briefly summarizing key prior results on the se-
cally sound) elicitation process for GAl models had yet beery, ;e toundations of elicitation in multiattribute models.
elaborated that allowed one to askal queriesabout pref-

erences over small subsets of attributes. Gonzales and Perpy;  Additive Models
[7], for example, recently described a sound elicitation pro- . e
cess for GAI models involving queries over full outcomes.Wte "’(‘fs“me a siﬁ;[ of gg”bfum’.)éf’ : ';[’X”' e?%h W't.h fi-

In Section 3 of this paper, we summarize the results of ouma?deobma;n:.sten? ;’n bghapl(f)?)sflsoe%lé Cosrgregz)rr:scwgr?gsto in-
recent UAI 2005 papdr] which provides the first semanti- > by a sy : © u mesp :
cally sound elicitation procedure for GAl models that reliesStantiations of these attributes. For instance, in a real-estate

on only local queries. Unlike additive models, GAI models S€tiNG, attributes may be house properties sucli gtot

require much more care in calibration because of the possfi2): D (distance to a park), and (pool). A user on whose
ble overlap of factors (sharing of attributes). Our process aC_ehalf we make decisions has not only qualitative preferences
counts for this explicitly without requiring the user to expressover these outcomes, but also strength of preference as cap-

preferences for full outcomes. This is significant because ifuréd by autility functionu : X — R. A utility function
allows one to exploit the generality, naturalness, compactnesq‘frves as a quantitative representation of strength of prefer-
and much wider applicability of GAI models, without losing €1ceS: and can viewed as reflecting preferenceslouer-

the advantage (offered by more restrictive additive models) ofeS (distributions over outcome$l; specifically, one lottery
elicitation based on local queries. Is preferred to another if and only if its expected utility is

. . N greater. Letlp,x";1 — p,x') denote the lottery where the
_A second important trend in preference elicitation, espep . icome T is realized with probability, and the worst
cially in Al, is the recognition that eliciting complete and

outcomex with probability1 — p; we refer to best and worst

precise preference information comes at a cost, and that tho"{ltcomes asnchor outcomes. Since utility functions are

:‘gqr?rzg\t/iirr?i?ftelrnsdn?glsfgt%Lela\:\lltgrtsr? ,'[Ez El)esieir?cfl?rrrifgr?:récree';_hnique up to positive affine transformations, it is customary
y ' to set the utility of the best outcome’ to 1, and the utility

ample, suppose that after eliciting partial preference informa-f the worst outcome to 0. In such a case. if a User is in-

tion from a user, a decision support system determines th ifferent between some outco nd thestandard gamble
the expected value (say, in dollar terms, after accounting foz T, | _ 9
p,x ' ;1 —p,x), thenu(x) = p.

price) of a flightA (given the system’s knowledge of odds of Given the exponential size of outcome spage simply

gngm(jvgi?g ?r:;utr?)'f ?|'igrr]1ttzg?\l,a%/2iv%%r)1 ésélggt;,lvr?degggoo?aﬁnpepresentin@ can be problematic. Fortunately, in many cir-
other,flights are less greferred). If the additional preferencégg?;;aer:]is aggggirvz rzggﬁgg]i nc(?gpgﬁ duesrscdetgscsounr]np&iccER—
information needed to determine which dfor I3 is in fact specifically, that the user is indifferent among lotteries that

optimal requires considerable additional interaction, it may; . ; -
. - . ave same marginals on each attributeean be written as a
be reasonable to terminate elicitation and simply recommengum of single-attributsubutility functions

B. Specifically, we want the system to recognize that it can
improve the quality of its recommendation lay most$10 n n
with further elicitation (i.e., by making decisid®now, it will u(x) =Y ui(w) =Y Nivi(s).
either have recommended the optimal decision or one that is i=1 i=1
within $10 of optimal). If the cost of elicitation outweighs

this improvement, the process should terminate. . .
More generally, probabilistic information about a user’s Aivi(2;), which themselves depend tocal value functions
' v; and scaling constants;. In our simple example, if the

utility function can be used to make this assessment. Re-'

cently, Bayesian models of preference elicitation have beeﬂserS utility for houses is given by an additive decomposi-
proposed that do just this; 2; §. With distributions over on, the user need only assess local value functiongex-

utility functions, queries are determined based on tkgir pressing strength of preference for different lot sizeg)and

. . vg, and tradeoff weight3;, A\p and\g expressing the rela-
pected value of information (EVOIih other words, the value tive “importance” of each attribute.

Or)gsi%llfpésfso%it:srmme?osgniz(ra]t?tx\?vﬁlcgiger(mtpe rrrisspsfctthteo Significantly, local value functions can be assessed using
oSS ponses) imp . ) L only local queries involving only the attribute in quest{®h.*
quality of the decision. The optlma_l query is that with hlg_hestFOr instance, to assess, our system need only ask queries
EVOI (less query cost), and the elicitation process Com'nueﬁlvolving “anchor” levels of the attribute, without requir-

only as long as EVOI s positive. ing any consideration of the values of other attributes. One

The second contribution of our UAI 2005 paper is the de-pn«qiple (hut not the most practical: see below) way to deter-
velopment of a Bayesian elicitation strategy along these line ine the local value of a 10,000 s.ft. lot is to ask a user for

that exploits GAI structure and asks the type of local querie§ e probabilityp at which she would be indifferent between

discussed above. Empirically, we are able to show that goofeying that Iot for sure and taking a hypothetical gamble that
or even optimal decisions can be made with very impre-

cise information about a user’s Ut|||ty fUnCtion, and that our 1We discuss elicitation 0&7 andvi in terms of “Comp|e’[e” and

Bayesian elicitation strategy asks appropriate queries (i.eexact assessment for now. We consider the implications of partial
determines good decisions with very few queries). assessment of preferences in Sec. 4.

This factorization exploits subutility functions;(z;) =



offers the best lot size (e.g., 20,000 sq.ft.) with probability
p and the worst possible lot (e.g., 3,500 sq.ft.) with- p
(assuming fixed values of all remaining attributes).
Assessing the tradeoff weights cannot be accomplished,
of course, without calibration of the across attributes. This
calibration requires the user to compare a small number of
full outcomes. Fortunately, the number of such queries is
linear in the number of attributes, and involves varying only
one feature at a time from a specific fixed (or default) out-
come (typically the worst instantiation of all attributes). Itis Figure 1:GAI graph. The nodes are GAI sets of attributes; edges
this ease of assessment that makes additive utility the modgle |abeled with shared attributes. The utility function can be de-
of choice in almost all practical applications of multiattribute composed as(z1, ..., 27) = w1 (21, 23, 24) + uz(21, 22, 23) +

utility theory. us(z2, T3, T4, T6) + ua(ws, T6) + us(ws, 7).

2.2 Generalized Additive Models

GAIl models[6; 1] provide an additive decomposition of a 3 GAI elicitation with local queries
utility function in situations where single attributes are not . . . : L

b . ; ; GAl utility functions can be elicited using local queries in a
additively independent, but (possibly overlappisgpsetaf anner related to local elicitation in simpler additive models.

attributes are. Such models are completely general and can . ; ) I
used in many realistic situations where simple additive mod?‘lﬁe main steps involved are: (a) elicitimgeal value func-
onswv; defined over the same factors as the subutility func-

els are clearly not expressive enough. In the real-estate exarﬁ(—)nS . that (unlike theu,) represent local preferences in a
ple with attributesl,, D, and P, complete additive indepen- Wir i) rep P

dence may not hold, but some partial independence may. F gv?igtls?gﬁss&:g?nvg?{;oacg?ib(r?t: Itlr?(IatlIr(])gcegllll(\)/gi’jtjleLI Fﬂlgc?t?o%fsa
instance, the smaller the lot the more valuable close proxim- y ) o N
Before we describe how to elicit the local value functions,

ity to the park; and, the value of a pool may be diminished by L

’ ' : e need a few more definitions. At the outset, we assume a
a smaller k.)t' GAI m_o_dels can capture su_ch dependencies b ecomposition of attributes inta factors; the attributes in
decomposing the utility of a full outcome into arguably natu'factorz‘ are indexed by the sé. We also designate one (ar-

ral subutilities over overlapping attribute s¢s} (utility of a bitrary) full outcome as aefaultoutcomex?. Attributes in-

specific lot size){ L, D} (utility of a park distance given lot ; X ; . .
size) and{ L, P} (utility of a pool given lot size). stantlate.d at their default Igvels will prowdg a reference point
for consistent global scaling of locally elicited value func-

Formally, assume a given collecti¢, . . ., I,, } of possi- ) . . ) o e
: " : . Ll tions. Finally, we introduce the notion ofanditioning set
bly intersecting attribute (index) sets,factors These sets of C: of factor as the set of all attributes that share GAI fac-

attributes argyeneralized additively independahand only . . D L
if the user is indifferent between any two lotteries with the}g::stov:'éhiﬁtgi'bﬁrtgsl'g;'n;g Se é?;ngilr?’ fgi&ﬁgg&%@?%ﬁiﬁ
same marginals on each set of attribui€ls Furthermore, . gure 9 :

fixed, “blocks” the influence of other factors on factor 5.

if GAI holds, the utility function can be written as a sum of f : findi
subutilityfunctions[6]: After an appropriate rearrangement of indices, an outcome
x can be written agx;, x¢,,y), wherey are the attributes
w(x) = u1(xr,) + ... + um(xy,,)- that are neither id; nor C;. Once the attributes in the con-

ditioning set are at default level, we can prove the followin
In our examplew(L, D, P) = u1(L)+us(L, D)+us(L, P).  thoorantd] P 9

In simple additive models, we can elicit information about  Theorem Under GAI conditions, if
local value functions in isolation, and then use global queries
to determine scaling parameters. With GAI utilities, the mat-  (xi,x¢,,y) ~ (p, (x{ ,x&,,¥); 1 — p, (xi ,x¢,,¥)), then
ter is less straightforward, because the values of subutility (. +0 /)~ (p (x],x% ,y'):1 - p, (xi,x2.,y)),
functionsu; do not directly represent the local preference re- ‘ ‘ ‘
lation among the attributes in factorintuitively, since utility for anyy’ (~ denotes the indifference relation). Therefore,
can “flow” from one subutility factor to the next through the o T o o
shared attributes, the subutility values do not have an inde- (xi,xc,) ~ (P, (xi ,x¢,); 1 — p, (x5, %¢,))-
pendent semantic meaning.

Partly because of such difficulties, the existing elicitation Thatis, as long as attributes in the conditioning sef afre
procedures for GAI models rely on full outcome queriesfixed, the remaining attributes do not influence the strength of
which circumvent the problem of local elicitation and glObal preference Of |Oca| Outcom%_ ThUS, we can perfornmca|
calibration issues. Such semantically sound procedures weggicitation with respect to local anchox§” andx;- without
implicitly described by Fishburn ifi6] and, more recently, gpecifying the levels of thg attributes. ‘
by Gonzales and Perriy]. However, by resorting to full " A |ocal value functiony;(-) can be defined to repre-
outcome queries, we lose some of the advantages of additig@nt conditional local preference relations as follows: let
models and fail to exploit the decomposition of utility func- ,, (x]) =1, vi(x+) = 0, andv; (x;) = piff
tionsduring the elicitation processThe next section summa-
rizes our contribution in addressing these issues. (xi, %% ) ~ (p, (%] ,x2 )i 1 —p, (xi",x&)).




Such local value functions can be elicited using oialy  (including a continuous query poif} analytically. Experi-
cal queries over attributes ii; and C;. Furthermore, we mental results on a 26-variable car-rental prob[@hnillus-
should note that standard gambles are only used to provideate that the GAI structure of this problem is sufficient to
a semantic definition of the local value functions. In practi-admit fast (around 1 second) EVOI computation; therefore,
cal elicitation procedures, we use other types of local queriesur approach can readily support interactive real-time pref-
to elicit such functions (as we describe below); whatever thesrence elicitation. We also show that our myopically-optimal
type of local queries, they involve only the comparison of al-querying strategy allows us recommend good or even optimal
ternatives, or gambles with the best and worst levels of thelecisions with very few queries.
attributes,in a single factor under the assumption that the
attributes in the conditioning set are fixed at defaultlevels. 5§ Next Steps

Just as in additive case, we need to elicit utilities of afewA number of directions remains to be exolored. In terms
“key” full outcomes to achieve the right calibration of the lo- fi diat tensi thods f i p‘t' GAI del
cal value functions. In GAI models, for each factor we must®' Mmediate extensions, metnods for eliciing moage

know the utility of the best and the worst possible outcomegructure are paramount since a suitable GAl decomposition

under the restriction that the attributesoiter factors are set :ﬁc"’:)frgrr:gﬁ'S;]tgi;zrn?ga;g%rt'ghlzg'erorzhseroﬂéig&ngécgtjde
to their default levels. Therefore, we need to perform only P 9 P

2m global queries—the same number as in the additive ut"pping computationally tractable approximations for comput-

ity model (herem would be the number of attribute%). ing s_e_quentially optimal querying strategies. o
Once the utilities of key outcomes are known, the calibra- Critical to the success of automated preference elicitation

tion can be done algebraically using an expression derivelf deeper exploratior] of the psychologicall and human-fact'o.rs
by Fishburn[6]. In our UAI 2005 paper, to which we refer Issues associated with framing and ordering effects, sensitiv-
for details, we introduce a tractable algorithmic procedure tdty analysis and robustness, and the reliability and acceptabil-

perform the same task by exploiting a graphical structure (exY Of different modes of interaction. This work helps lay firm
pressed by a directed GAI graph, as in Figure 1) of a giveryenantic foundations from a normative perspective; incorpo-
GAl model. Inthis way, we can provide a canonical definition fating the insights of behavioral models is vital.

of subutility functionsu; in terms of the local value functions
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