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Abstract
Any automated decision support software must tailor its
actions or recommendations to the preferences of differ-
ent users. Thus it requires somerepresentationof user
preferences as well as a means ofeliciting or otherwise
learning the preferences of the specific user on whose be-
half it is acting. While additive preference models offer
a compact representation of multiattribute utility func-
tions, and ease of elicitation, they are often overly re-
strictive. The more flexible generalized additive inde-
pendence (GAI) model maintains much of the intuitive
nature of additive models, but comes at the cost of much
more complex elicitation. In this article, we summarize
the key contributions of our earlier paper (UAI 2005): (a)
the first elaboration of the semantic foundations of GAI
models that allows one to engage in preference elicitation
usinglocal queries over small subsets of attributes rather
thanglobal queries over full outcomes; and (b) specific
procedures for Bayesian preference elicitation of the pa-
rameters of a GAI model using such local queries.

1 The Preference Bottleneck
The increased emphasis on computational decision support
tools in decision analysis and AI has brought into sharp focus
the need forautomated preference elicitation. Such software
must have the ability to tailor its actions or recommendations
to the specific needs and preferences of different users; thus
it requires some means to obtain such preference informa-
tion. While decision theory presumes that both the dynam-
ics of a decision problem and preferences are known, it is
often the case that the dynamics (i.e., the mapping from ac-
tions to outcomes) are fixed across a variety of users, with
preferences varying widely. For example, in a travel plan-
ning scenario, the distribution over outcomes associated with
choosing a specific flight from Toronto to Boston is the same
for any user (e.g., the odds of a delay greater than one hour,
arriving during rush hour, losing luggage), but each user’s
strength of preference for such outcomes can vary consider-
ably. Thispreference bottleneck—the need to obtain individ-
uated preference information—is one of the most formidable
obstacles to the widespread deployment of computer-aided
decision support systems.
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Much work in decision analysis, economics, marketing
and AI has dealt with the problem of preference elicita-
tion, but challenges remain. One of the most pressing is
the ability to handle large, multiattribute outcome spaces.
Specifically, when outcomes in a decision problem are de-
fined as instantiations of a set ofattributes (e.g., the rel-
evant factors influencing the desirability of a flight in the
scenario above), the exponential size of the outcome space
makes both representation and elicitation of preferences dif-
ficult. Factored utility models, which decompose prefer-
ences into more manageable components by making indepen-
dence assumptions, can help overcome both difficulties[9;
6].

Additive modelsform a specific class of factored models
that is used widely in practice: one assumes that the strength
of preference for the values of one attribute can be expressed
independently of the values of others (e.g., a delay of one hour
equally despised whether or not your bags are lost). Addi-
tive models allow not only concise representation of a utility
function, but can beelicited using almost exclusivelylocal
queries. These ask a user for her strength of preference for
each attribute in isolation;global queriesrequire comparison
of full outcomes. This is significant because a user need only
answer queries that relate to the underlying structure of her
preferences. For example, a user can express preference for
length of flight delay (20 minutes vs. one hour) independently
of her preference for actual departure time, missed connec-
tion, lost baggage, and other attributes. This stands in con-
trast with asking a user to compare full outcomes that involve
the joint instantiation of all attributes, a cognitively difficult
task if more than a handful of attributes are involved.

The appeal of additive models is thus considerable. How-
ever, the strong independence assumptions required make
their applicability suspect in many cases. Thegeneralized
additive independence (GAI)model[6; 1] allows for a sim-
ilar additive decomposition of a utility function, but where
overlapping subsets of attributes are the factors involved
rather than single attributes. This representation is completely
general—it can capture any utility function—yet in practice
is quite intuitive and natural, and typically yields a compact
decomposition of preferences. The power of this representa-
tion will be illustrated in the next section.

The GAI model, while offering the same compactness and
naturalness of representation as the much more widely used



additive model, had not yielded (to date) the same advan-
tages with respect to elicitation. Specifically, no (semanti-
cally sound) elicitation process for GAI models had yet been
elaborated that allowed one to asklocal queriesabout pref-
erences over small subsets of attributes. Gonzales and Perny
[7], for example, recently described a sound elicitation pro-
cess for GAI models involving queries over full outcomes.
In Section 3 of this paper, we summarize the results of our
recent UAI 2005 paper[4] which provides the first semanti-
cally sound elicitation procedure for GAI models that relies
on only local queries. Unlike additive models, GAI models
require much more care in calibration because of the possi-
ble overlap of factors (sharing of attributes). Our process ac-
counts for this explicitly without requiring the user to express
preferences for full outcomes. This is significant because it
allows one to exploit the generality, naturalness, compactness
and much wider applicability of GAI models, without losing
the advantage (offered by more restrictive additive models) of
elicitation based on local queries.

A second important trend in preference elicitation, espe-
cially in AI, is the recognition that eliciting complete and
precise preference information comes at a cost, and that the
improvement in decision quality some piece of preference in-
formation offers may not be worth the cost incurred. For ex-
ample, suppose that after eliciting partial preference informa-
tion from a user, a decision support system determines that
the expected value (say, in dollar terms, after accounting for
price) of a flightA (given the system’s knowledge of odds of
on-time departure, flight delays, etc.) is between $400 and
$460, while that of flightB is between $450 and $560 (all
other flights are less preferred). If the additional preference
information needed to determine which ofA or B is in fact
optimal requires considerable additional interaction, it may
be reasonable to terminate elicitation and simply recommend
B. Specifically, we want the system to recognize that it can
improve the quality of its recommendation byat most$10
with further elicitation (i.e., by making decisionB now, it will
either have recommended the optimal decision or one that is
within $10 of optimal). If the cost of elicitation outweighs
this improvement, the process should terminate.

More generally, probabilistic information about a user’s
utility function can be used to make this assessment. Re-
cently, Bayesian models of preference elicitation have been
proposed that do just this[5; 2; 8]. With distributions over
utility functions, queries are determined based on theirex-
pected value of information (EVOI): in other words, the value
of a query is determined by the expected (with respect to
possible responses) improvement it will offer in terms of the
quality of the decision. The optimal query is that with highest
EVOI (less query cost), and the elicitation process continues
only as long as EVOI is positive.

The second contribution of our UAI 2005 paper is the de-
velopment of a Bayesian elicitation strategy along these lines
that exploits GAI structure and asks the type of local queries
discussed above. Empirically, we are able to show that good
or even optimal decisions can be made with very impre-
cise information about a user’s utility function, and that our
Bayesian elicitation strategy asks appropriate queries (i.e.,
determines good decisions with very few queries).

2 Multiattribute Utility Models
We begin by briefly summarizing key prior results on the se-
mantic foundations of elicitation in multiattribute models.

2.1 Additive Models
We assume a set of attributesX1, X2, . . . , Xn, each with fi-
nite domains. The setX of possibleoutcomesof decisions
made by a system on behalf of some user correspond to in-
stantiations of these attributes. For instance, in a real-estate
setting, attributes may be house properties such asL (lot
size),D (distance to a park), andP (pool). A user on whose
behalf we make decisions has not only qualitative preferences
over these outcomes, but also strength of preference as cap-
tured by autility function u : X 7→ R. A utility function
serves as a quantitative representation of strength of prefer-
ences, and can viewed as reflecting preferences overlotter-
ies(distributions over outcomes)[9]; specifically, one lottery
is preferred to another if and only if its expected utility is
greater. Let〈p,x>; 1 − p,x⊥〉 denote the lottery where the
best outcomex> is realized with probabilityp, and the worst
outcomex⊥ with probability1−p; we refer to best and worst
outcomes asanchor outcomes. Since utility functions are
unique up to positive affine transformations, it is customary
to set the utility of the best outcomex> to 1, and the utility
of the worst outcomex⊥ to 0. In such a case, if a user is in-
different between some outcomex and thestandard gamble
〈p,x>; 1 − p,x⊥〉, thenu(x) = p.

Given the exponential size of outcome spaceX, simply
representingu can be problematic. Fortunately, in many cir-
cumstances anadditive model[9] can be used to compactly
representu. Under a strong independence assumption—
specifically, that the user is indifferent among lotteries that
have same marginals on each attribute—u can be written as a
sum of single-attributesubutility functions:

u(x) =
n∑

i=1

ui(xi) =
n∑

i=1

λivi(xi).

This factorization exploits subutility functionsui(xi) =
λivi(xi), which themselves depend onlocal value functions
vi and scaling constantsλi. In our simple example, if the
user’s utility for houses is given by an additive decomposi-
tion, the user need only assess local value functionsvL (ex-
pressing strength of preference for different lot sizes),vD and
vS , and tradeoff weightsλL, λD andλS expressing the rela-
tive “importance” of each attribute.

Significantly, local value functions can be assessed using
only local queries involving only the attribute in question[9].1

For instance, to assessvL, our system need only ask queries
involving “anchor” levels of the attributexL, without requir-
ing any consideration of the values of other attributes. One
possible (but not the most practical; see below) way to deter-
mine the local value of a 10,000 sq.ft. lot is to ask a user for
the probabilityp at which she would be indifferent between
getting that lot for sure and taking a hypothetical gamble that

1We discuss elicitation ofui andvi in terms of “complete” and
exact assessment for now. We consider the implications of partial
assessment of preferences in Sec. 4.



offers the best lot size (e.g., 20,000 sq.ft.) with probability
p and the worst possible lot (e.g., 3,500 sq.ft.) with1 − p
(assuming fixed values of all remaining attributes).

Assessing the tradeoff weightsλi cannot be accomplished,
of course, without calibration of thevi across attributes. This
calibration requires the user to compare a small number of
full outcomes. Fortunately, the number of such queries is
linear in the number of attributes, and involves varying only
one feature at a time from a specific fixed (or default) out-
come (typically the worst instantiation of all attributes). It is
this ease of assessment that makes additive utility the model
of choice in almost all practical applications of multiattribute
utility theory.

2.2 Generalized Additive Models
GAI models[6; 1] provide an additive decomposition of a
utility function in situations where single attributes are not
additively independent, but (possibly overlapping)subsetsof
attributes are. Such models are completely general and can be
used in many realistic situations where simple additive mod-
els are clearly not expressive enough. In the real-estate exam-
ple with attributesL, D, andP , complete additive indepen-
dence may not hold, but some partial independence may. For
instance, the smaller the lot the more valuable close proxim-
ity to the park; and, the value of a pool may be diminished by
a smaller lot. GAI models can capture such dependencies by
decomposing the utility of a full outcome into arguably natu-
ral subutilities over overlapping attribute sets{L} (utility of a
specific lot size),{L, D} (utility of a park distance given lot
size) and{L, P} (utility of a pool given lot size).

Formally, assume a given collection{I1, . . . , Im} of possi-
bly intersecting attribute (index) sets, orfactors. These sets of
attributes aregeneralized additively independentif and only
if the user is indifferent between any two lotteries with the
same marginals on each set of attributes[6]. Furthermore,
if GAI holds, the utility function can be written as a sum of
subutilityfunctions[6]:

u(x) = u1(xI1 ) + . . . + um(xIm).

In our example,u(L, D, P ) = u1(L)+u2(L, D)+u3(L, P ).
In simple additive models, we can elicit information about

local value functions in isolation, and then use global queries
to determine scaling parameters. With GAI utilities, the mat-
ter is less straightforward, because the values of subutility
functionsui do not directly represent the local preference re-
lation among the attributes in factori. Intuitively, since utility
can “flow” from one subutility factor to the next through the
shared attributes, the subutility values do not have an inde-
pendent semantic meaning.

Partly because of such difficulties, the existing elicitation
procedures for GAI models rely on full outcome queries
which circumvent the problem of local elicitation and global
calibration issues. Such semantically sound procedures were
implicitly described by Fishburn in[6] and, more recently,
by Gonzales and Perny[7]. However, by resorting to full
outcome queries, we lose some of the advantages of additive
models and fail to exploit the decomposition of utility func-
tionsduring the elicitation process. The next section summa-
rizes our contribution in addressing these issues.
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Figure 1:GAI graph. The nodes are GAI sets of attributes; edges
are labeled with shared attributes. The utility function can be de-
composed asu(x1, . . . , x7) = u1(x1, x3, x4) + u2(x1, x2, x3) +
u3(x2, x3, x4, x6) + u4(x5, x6) + u5(x5, x7).

3 GAI elicitation with local queries
GAI utility functions can be elicited using local queries in a
manner related to local elicitation in simpler additive models.
The main steps involved are: (a) elicitinglocal value func-
tionsvi defined over the same factors as the subutility func-
tionsui, that (unlike theui) represent local preferences in a
semantically sound way; and, (b) eliciting global utilities of a
few “key” full outcomes to calibrate the local value functions.

Before we describe how to elicit the local value functions,
we need a few more definitions. At the outset, we assume a
decomposition of attributes intom factors; the attributes in
factori are indexed by the setIi. We also designate one (ar-
bitrary) full outcome as adefaultoutcomex0. Attributes in-
stantiated at their default levels will provide a reference point
for consistent global scaling of locally elicited value func-
tions. Finally, we introduce the notion of aconditioning set
Ci of factor i as the set of all attributes that share GAI fac-
tors with attributes inIi. For example, the conditioning set of
factor 5 in Figure 1 consists of a single attributex6 that, once
fixed, “blocks” the influence of other factors on factor 5.

After an appropriate rearrangement of indices, an outcome
x can be written as(xi,xCi ,y), wherey are the attributes
that are neither inIi nor Ci. Once the attributes in the con-
ditioning set are at default level, we can prove the following
theorem[4]:

Theorem Under GAI conditions, if

(xi,x
0
Ci

, y) ∼ 〈p, (x>
i ,x0

Ci
,y); 1 − p, (x⊥

i ,x0
Ci

,y)〉, then

(xi,x
0
Ci

, y′) ∼ 〈p, (x>
i ,x0

Ci
,y′); 1 − p, (x⊥

i ,x0
Ci

,y′)〉,
for anyy′ (∼ denotes the indifference relation). Therefore,

(xi,x
0
Ci

) ∼ 〈p, (x>
i ,x0

Ci
); 1 − p, (x⊥

i ,x0
Ci

)〉.

That is, as long as attributes in the conditioning set ofIi are
fixed, the remaining attributes do not influence the strength of
preference of local outcomesxi. Thus, we can performlocal
elicitation with respect to local anchorsx>

i andx⊥
i without

specifying the levels of they attributes.
A local value functionvi(·) can be defined to repre-

sent conditional local preference relations as follows: let
vi(x>

i ) = 1, vi(x⊥
i ) = 0, andvi(xi) = p iff

(xi,x0
Ci

) ∼ 〈p, (x>
i ,x0

Ci
); 1 − p, (x⊥

i ,x0
Ci

)〉.



Such local value functions can be elicited using onlylo-
cal queries over attributes inIi and Ci. Furthermore, we
should note that standard gambles are only used to provide
a semantic definition of the local value functions. In practi-
cal elicitation procedures, we use other types of local queries
to elicit such functions (as we describe below); whatever the
type of local queries, they involve only the comparison of al-
ternatives, or gambles with the best and worst levels of the
attributes,in a single factor, under the assumption that the
attributes in the conditioning set are fixed at default levels.

Just as in additive case, we need to elicit utilities of a few
“key” full outcomes to achieve the right calibration of the lo-
cal value functions. In GAI models, for each factor we must
know the utility of the best and the worst possible outcomes
under the restriction that the attributes inother factors are set
to their default levels. Therefore, we need to perform only
2m global queries—the same number as in the additive util-
ity model (here,m would be the number of attributes).2

Once the utilities of key outcomes are known, the calibra-
tion can be done algebraically using an expression derived
by Fishburn[6]. In our UAI 2005 paper, to which we refer
for details, we introduce a tractable algorithmic procedure to
perform the same task by exploiting a graphical structure (ex-
pressed by a directed GAI graph, as in Figure 1) of a given
GAI model. In this way, we can provide a canonical definition
of subutility functionsui in terms of the local value functions
vi and the utilities of key outcomes.

4 Partial Elicitation with Local Queries
We now describe one possible way of performingpartial elic-
itation of utility parameters. Generally speaking, good (or
even optimal) decisions can be realized without complete util-
ity information. Rather than asking for the direct assessment
of utility parameters using standard gambles as in[7], we use
simpler binarycomparison queriesover local gambles. Fol-
lowing [5; 2], we suppose some prior over the parameters of
a GAI model, and use myopic expected value of information
(EVOI) to determine appropriate queries.

In particular, we assume that uncertainty over utilities is
quantified via independent priors over local value function
parameters. In such a case, we use queries of the form “Is
the local value of suboutcomexi greater thanl?” wherel lies
in the normalized range[0, 1], and the attributes in the con-
ditioning set are assumed to be fixed at default levels. (Note
that this query is equivalent to a comparison of local lotter-
ies.) Either responseyesor no bounds the local values and
reduces uncertainty over utility functions.

Such queries arelocal because they ask a user to focus
on preferences over a (usually small) subset of attributes; the
values of remaining attributes do not have to be considered.
The best myopic query can be computed analytically if the
prior information over local utility parameters is specified as
a mixture of uniform distributions[2]. Such mixtures are
closed under updates, which makes it possible to maintain
an exact density over utility parameters throughout the elici-
tation process. Furthermore, we can compute the best query

2If our default outcome is the worst possible outcome, we only
need to performm global queries.

(including a continuous query pointl) analytically. Experi-
mental results on a 26-variable car-rental problem[3] illus-
trate that the GAI structure of this problem is sufficient to
admit fast (around 1 second) EVOI computation; therefore,
our approach can readily support interactive real-time pref-
erence elicitation. We also show that our myopically-optimal
querying strategy allows us recommend good or even optimal
decisions with very few queries.

5 Next Steps
A number of directions remains to be explored. In terms
of immediate extensions, methods for eliciting GAI model
structure are paramount since a suitable GAI decomposition
is a prerequisite for our algorithm. Other directions include
incorporating noise models into user responses[2] and devel-
oping computationally tractable approximations for comput-
ing sequentially optimal querying strategies.

Critical to the success of automated preference elicitation
is deeper exploration of the psychological and human-factors
issues associated with framing and ordering effects, sensitiv-
ity analysis and robustness, and the reliability and acceptabil-
ity of different modes of interaction. This work helps lay firm
semantic foundations from a normative perspective; incorpo-
rating the insights of behavioral models is vital.
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