
Stochastic Local Search for POMDP Controllers

by

Darius Braziunas

A thesis submitted in conformity with the requirements
for the degree of Master of Science

Graduate Department of Computer Science
University of Toronto

Copyright c© 2003 by Darius Braziunas

Abstract

Stochastic Local Search for POMDP Controllers

Darius Braziunas

Master of Science

Graduate Department of Computer Science

University of Toronto

2003

Gradient-based search in the space of policies representable as stochastic finite state

controllers is one of the few tractable solution methods for non-trivial partially observable

Markov decision processes (POMDPs). In this thesis, we illustrate a basic problem with

standard gradient ascent applied to POMDPs, where the sequential nature of the decision

problem is at issue, and propose a new stochastic local search method as an alternative.

Our method employs certain heuristics that mimic some of the sequential reasoning

inherent in dynamic programming approaches; while more computationally demanding,

it can find good, even optimal, controllers where gradient-based methods commonly

converge to poor local suboptima.

ii

Acknowledgements

I would like to thank Dr. Craig Boutilier for his support and guidance, and Dr. Fahiem

Bacchus for being the second reader.

iii

Contents

1 Introduction 1

2 POMDP solution methods 4

2.1 Sequential decision processes . 4

2.1.1 MDP framework . 4

2.1.2 POMDP framework . 7

2.1.3 Process histories . 8

2.1.4 Performance measures . 9

2.2 Policy representations . 10

2.2.1 MDP policies . 11

2.2.2 POMDP policy trees . 14

2.2.3 α-vectors and belief state MDPs 17

2.2.4 Finite-state controllers . 20

2.2.5 Cross-product MDP . 24

2.3 Exact solution algorithms . 26

2.3.1 Value iteration . 26

2.3.2 Policy iteration . 28

2.4 Gradient-based optimization . 32

3 Stochastic local search procedure 38

3.1 Motivating example . 38

iv

3.2 Stochastic local search framework . 46

3.2.1 Moves, conditional plans, actions 48

3.2.2 Q-values . 50

3.2.3 Heuristic function . 52

3.2.4 Tabu search . 55

3.3 Algorithm . 57

3.3.1 Local moves . 59

3.3.2 Global moves . 60

3.3.3 Gradient ascent . 60

4 Experiments 65

4.1 Load/Unload . 66

4.2 Planning . 68

4.3 Heaven/Hell . 70

4.4 Preference elicitation . 72

5 Conclusions 79

Bibliography 81

v

Chapter 1

Introduction

Partially observable Markov decision processes (POMDPs) provide a natural model for

sequential decision making under uncertainty. This model augments a well-researched

framework of Markov decision processes (MDPs) [How60, Put94] to situations where an

agent cannot reliably identify the underlying environment state. The POMDP formal-

ism is very general and powerful, extending the application of MDPs to many realistic

problems.

Unfortunately, the generality of POMDPs entails high computational cost. The

problem of finding optimal policies for finite-horizon POMDPs has been proven to be

PSPACE-complete [PT87], and their existence for infinite-horizon POMDPs — undecid-

able [MHC99]. Because of the intractability of current solution algorithms, especially

those that use dynamic programming to construct (approximately) optimal value func-

tions [SS73, CLZ97], the application of POMDPs remains limited to very small problems.

Policy-based solution methods search directly in the space of policies for the best

course of action. Constraining the policy space facilitates the search and may lead

tractable (although approximate) POMDP solution algorithms. Finite-state controllers

(FSCs) are the policy representation of choice in such work, providing a compromise be-

tween the requirement that action choices depend on certain aspects of observable history

1

Chapter 1. Introduction 2

and the ability to easily control the complexity of policy space being searched.

While optimal FSCs can be constructed if no restrictions are placed on their struc-

ture [Han98a], it is more usual to impose some structure that one hopes admits a good

parameterization, and search through that restricted space. In this thesis, we study the

problem of finding the best FSC of a given size for a completely specified POMDP. Even

with the FSC size restriction constraint, the problem remains NP-hard [Lit94, MKKC99];

therefore, gradient ascent (GA) has proven to be especially attractive for solving this type

of problems because of its computational properties [MKKC99, AB02].

One difficulty with gradient-based approaches, not surprisingly, is the ease with which

they converge to suboptimal local optima. Our experiences with GA, specifically, have

demonstrated it leads to poor local optima in problems where the precise sequence of

actions taken is important to good performance. This is a common feature of stochastic

planning problems to which POMDPs are often applied; they have very different char-

acteristics from grid-world and other navigational problems on which GA has often been

tested. While various restrictions on policy space can be used to encode prior knowledge

about a problem’s solution [MKKC99], such restrictions may be hard to encode naturally,

and such knowledge may be hard to come by.

In this thesis, we attempt to overcome the existence of local optima of this type,

while remaining within the “local search” framework. We propose a stochastic local

search (SLS) technique that works in the space of FSCs, like GA, but which uses very

different heuristics to evaluate moves. In particular, it incorporates intuitions—used in

the dynamic programming solution to POMDPs that work in belief-state value func-

tion space—that allow moves in different directions that those permitted by simple GA.

While our methods are more computationally intensive, they provide a good compromise

between full dynamic programming updates and optimal search techniques like branch-

and-bound, and the very restricted form of local search admitted by GA.

Our algorithm, like GA, scales well with the size of the problem; however, its com-

Chapter 1. Introduction 3

plexity is directly related to the size of the FSC. Therefore, we expect that our approach

will work well for large POMDPs where relatively simple policies achieve near-optimal

values. Because we are searching directly in the policy space, our solution also provides

a convenient form of policy for online execution.

The rest of the thesis is structured as follows. Chapter 2 provides an overview of

POMDPs, with explicit emphasis on policies and solution methods that work directly in

the space of policies. It introduces the POMDP value and policy iteration as well as gra-

dient ascent algorithms, which provide the background for our SLS algorithm. Chapter 3

describes the SLS algorithm in detail, explaining main intuitions and motivations for its

various parts. Chapter 5 illuminates various aspects of the SLS algorithm and compares

its empirical performance to GA on several examples drawn from the research literature.

Chapter 2

POMDP solution methods

This chapter provides an overview of partially observable Markov decision processes

(POMDPs), concentrating on concepts that will be used later to explain our stochas-

tic local search procedure. The material is structured in a way that emphasizes the

notion of policies and solution methods that work directly in the space of policies.

2.1 Sequential decision processes

A sequential decision process involves an agent that interacts synchronously with the

external environment, or system; the agent’s goal is to maximize reward by choosing

appropriate actions. These actions and the history of the environment states determine

the probability distribution over possible next states. Therefore, the sequence of system

states can be modeled as a stochastic process.

2.1.1 MDP framework

The most commonly used formal model of fully-observable sequential decision processes

is the Markov decision process (MDP) model. An MDP can be viewed as an extension

of Markov chains with a set of decisions (actions) and a state-based reward or cost struc-

4

Chapter 2. POMDP solution methods 5

ture. For each possible state of the process, a decision has to be made regarding which

action should be executed in that state. The chosen action affects both the transition

probabilities and the costs (or rewards) incurred. The goal is to choose an optimal action

in every state to increase some predefined measure of performance. The decision process

for doing this is referred to as the Markov decision process.

Actions and state transitions

A state is a description of the environment at a particular point in time. Although we

will deal with continuous state and action spaces when describing preference elicitation

problems, we generally assume that the environment can be in a finite number of states,

and the agent can choose from a finite set of actions. Let S = {s0, s1, . . . , sN} be a finite

set of states. Since the process is stochastic, a particular state at some discrete stage, or

time step t ∈ T , can be viewed as a random variable St whose domain is the state space

S.

For a process to be Markovian, the state has to contain enough information to predict

the next state. This means that the past history of system states is irrelevant to predicting

the future:

Pr(St+1|S0, S1, . . . , St) = Pr(St+1|St). (2.1)

At each stage, the agent can affect the state transition probabilities by executing one

of the available actions. The set of all actions will be denoted by A. Thus, each action

a ∈ A is fully described by a |S| × |S| state transition matrix, whose entry in an ith row

and jth column is the probability that the system will move from state si to state sj if

action a gets executed:

paij = Pr(St+1 = sj|St = si, A
t = a). (2.2)

We will assume that our processes are stationary, i.e., that the transition probabilities

do not depend on the current time step.

Chapter 2. POMDP solution methods 6

St

Rt

At

St+1

Figure 2.1: Causal relationships between MDP states, actions, and rewards. Rt is reward

received at stage t, i.e., R(St, At).

The transition function T (·) summarizes the effects of actions on systems states.

T : S × A 7→ ∆(S) is a function that for each state and action associates a probability

distribution over the possible successor states (∆(S) denotes the set of all probability

distributions over S). Thus, for each s, s′ ∈ S and a ∈ A, the function T determines the

probability of a transition from state s to state s′ after executing action a, i.e.,

T (s, a, s′) = Pr(St+1 = s′|St = s, At = a). (2.3)

Rewards

R : S × A 7→ R is a reward function that for each state and action assigns a numeric

reward (or cost, if the value is negative). R(s, a) is an immediate reward that an agent

would receive for being in state s and executing action a.

The causal relationships between MDP states, actions, and rewards are illustrated in

Figure 2.1.

Chapter 2. POMDP solution methods 7

2.1.2 POMDP framework

A POMDP is a generalization of MDPs to situations in which system states are not

fully observable. This realistic extension of MDPs dramatically increases the complexity

of POMDPs, making exact solutions virtually intractable. In order to act optimally, an

agent might need to take into account all the previous history of observations and actions,

rather than just the current state it is in.

A POMDP is comprised of an underlying MDP, extended with an observation space

O and observation function Z(·).

Observation function

LetO be a set of observations an agent can receive. In MDPs, the agent has full knowledge

of the system state; therefore, O ≡ S. In partially observable environments, observations

are only probabilistically dependent on the underlying environment state. Determining

which state the agent is in becomes problematic, because the same observation can be

observed in different states.

Z : S ×A 7→ ∆(O) is an observation function that specifies the relationship between

system states and observations. Z(s′, a, o′) is the probability that observation o′ will be

recorded after an agent performs action a and lands in state s′:

Z(s′, a, o′) = Pr(Ot+1 = o′ | St+1 = s′, At = a). (2.4)

Formally, a POMDP is a tuple 〈S,A, T, R,O, Z〉, consisting of the state space S,

action space A, transition function T (·), reward function R(·), observation space O, and

observation function Z(·). Its influence diagram is shown in Figure 2.2.

Chapter 2. POMDP solution methods 8

St

Rt

At

St+1

Ot+1

Figure 2.2: Causal relationships between POMDP states, actions, rewards, and observations.

2.1.3 Process histories

A history is a record of everything that happened during the execution of the process.

For POMDPs, a complete system history from the beginning till time t is a sequence of

state, observation, and action triples

〈S0, O0, A0〉, 〈S1, O1, A1〉, . . . , 〈St, Ot, At〉. (2.5)

The set of all complete histories (or trajectories) will be denoted as H.

Since rewards depend only on visited states and executed actions, a system history is

enough to evaluate an agent’s performance. Thus, a system history is just a sequence of

state and action pairs:

〈S0, A0〉, 〈S1, A1〉, . . . , 〈St, At〉. (2.6)

A system history h from the set of all system histories Hs provides an external, objective

view about the process; therefore, value functions will be defined on the set Hs in the

next subsection.

In a partially observable environment, an agent cannot fully observe the underlying

world state; therefore, it can only base its decisions on the observable history. Let’s

assume that at the outset, the agent has prior beliefs about the world that are summarized

by the probability distribution b0 over the system states; the agent starts by executing

Chapter 2. POMDP solution methods 9

some action a0 based solely on b0. The observable history until time step t is then a

sequence of action and observation pairs

〈A0, O1〉, 〈A1, O2〉, . . . , 〈At−1, Ot〉. (2.7)

The set of all possible observable histories will be denoted as Ho. Different ways of

structuring and representing Ho have resulted in different POMDP solution and policy

execution algorithms. The concept of observable history and a closely related notion of

internal memory will be central to issues addressed in this thesis.

2.1.4 Performance measures

At each step in a sequential decision process, an agent has to decide what action to

perform based on its observable history. A policy π : Ho 7→ A is a rule that maps

observable trajectories into actions. A given policy induces a probability distribution

over all possible sequences of states and actions, for an initial distribution b0. Therefore,

an agent has control over the likelihood of particular system trajectories. Its goal is

to choose a policy that maximizes some objective function that is defined on the set of

system histories Hs.

Such objective function is called a value function V (·); it essentially ranks system

trajectories by assigning a real number to each h ∈ Hs; a system history h is preferred

to h′ if and only if V (h) > V (h′). Formally, a value function is a mapping from the set

of system histories into real numbers:

V : Hs 7→ R. (2.8)

In most MDP and POMDP formulations found in AI literature, the value function

V (·) is assumed to have structure that makes it much easier to represent and evaluate. In

this thesis, we will assume that V (·) is additive – the value of a particular system history

is simply a sum of rewards accrued at each time step.

Chapter 2. POMDP solution methods 10

If the decision process stops after a finite number of steps H , the problem is a finite

horizon problem. In such problems, it is common to maximize the total expected reward.

The value function for a system trajectory h of length H is simply the sum of rewards

attained at each stage [Bel57]:

V (h) =

t=H∑
t=0

R(st, at). (2.9)

The sum of rewards over an infinite trajectory may be unbounded. A mathematically

elegant way to address this problem is to introduce a discount factor γ; the rewards re-

ceived later get discounted, and contribute less than current rewards. The value function

for a total discounted reward problem is [Bel57]:

V (h) =

∞∑
t=0

γtR(st, at), 0 ≤ γ < 1. (2.10)

This formulation is very common in current MDP and POMDP literature, including

the key papers concerning policy-based search in POMDPs [Han97, Han98a, MKKC99,

MPKK99]. We will use it as our performance measure in all the problems in this thesis.

Another popular value function is the average reward per stage1, used, e.g., in [AB02].

2.2 Policy representations

Generally, an agent’s task is to calculate the optimal course of action in an uncertain

environment and then execute its plan contingent on the history of its sensory inputs. The

criterion of optimality is predetermined; in this thesis, we will use the infinite horizon

discounted sum of rewards model, described above. The agent’s behavior is therefore

determined by its policy π, which in its most general form is a mapping from the set of

observable histories to actions:

π : Ho 7→ A (2.11)

1V (h) = limn→∞ 1
n

∑n
t=0 R(st, at).

Chapter 2. POMDP solution methods 11

Given a history

ht = 〈a0, o1〉, 〈a1, o2〉, . . . , 〈at−1, ot〉,

the action prescribed by the policy π at time t would be at = π(ht); a0 is the agent’s

initial action, and ot is the latest observation.

One of the more important concepts is that of an expected policy value. Taking into

account a prior belief distribution over the system states b0, a policy induces a probability

distribution Pr(h|π, b0) over the set of system histories Hs. The expected policy value is

simply the expected value of system trajectories induced by the policy π:

EV (π) ≡ V π =
∑
h∈Hs

V (h)Pr(h|π, b0). (2.12)

The value of the policy π at a given starting state s0 will be denoted V π(s0). Then,

EV (π) =
∑
s∈S

b0(s)V
π(s). (2.13)

The agent’s goal is to find a policy π∗ ∈ Π with the maximal expected value from the set

Π of all possible policies.

The general form of a policy as a mapping from arbitrary observation histories to ac-

tions is very impractical. Existing POMDP solution algorithms exploit structure in value

and observation functions to calculate optimal policies that have much more tractable

representations. For example, observable histories can be represented as probability dis-

tributions over system states, or grouped into a finite set of distinguishable classes using

finite-suffix trees or finite-state controllers.

2.2.1 MDP policies

A POMDP where an agent can fully observe the underlying system state reduces to an

MDP. Since the sequence of states forms a Markov chain, the next state depends only

on the current state; the history of the previous states is therefore rendered irrelevant.

Chapter 2. POMDP solution methods 12

Finite horizon policies

For finite horizon MDP problems, the knowledge of the current state and stage is sufficient

to represent the whole observable trajectory for the purposes of maximizing total reward

(discounted or not). Therefore, a policy π can be reduced to a mapping from states and

stages to actions:

π : S × T 7→ A. (2.14)

Let π(s, t) be the action prescribed by the policy at state s with t stages remaining till

the end of the process. The expected value of a policy at any state can then be computed

by the following recurrence [Bel57]:

V π
0 (s) = R(s, π(s, 0)),

V π
t (s) = R(s, π(s, t)) + γ

∑
s′∈S

T (s, π(s, t), s′) V π
t−1(s

′).
(2.15)

The value functions in the set {V π
t }0≤t≤H are called t-horizon, or t-step, value functions;

H is the horizon length — a predetermined number of stages the process goes through.

A policy π∗ is optimal if V π∗
H (s) ≥ V π′

H (s) for all H-horizon policies π′ and all states

s ∈ S. The optimal value function is a value function of an optimal policy: V ∗
H ≡ V π∗

H . A

key result, called Bellman’s principle of optimality [Bel57] allows to calculate the optimal

t-step value function from the (t− 1)-step value function:

V ∗
t (s) = max

a∈A

[
R(s, a) + γ

∑
s′∈S

T (s, a, s′) V ∗
t−1(s

′)

]
. (2.16)

This equation has served as a basis for value-iteration MDP solution algorithms and

inspired analogous POMDP solution methods.

Infinite horizon policies

For infinite horizon MDP problems, optimal decisions can be calculated based only on

the current system state, since at any stage, there is still an infinite number of time steps

Chapter 2. POMDP solution methods 13

remaining. Without loss of optimality, infinite horizon policies can be represented as

mappings from states to actions [How60]:

π : S 7→ A. (2.17)

Policies that do not depend on stages are called stationary policies.

The value of a stationary policy π can be determined by a recurrence analogous to

the finite horizon case:

V π(s) = R(s, π(s)) + γ
∑
s′∈S

T (s, π(s), s′) V π(s′). (2.18)

The agent’s goal is to find a policy π∗ that would maximize the value function V (·) for

all states s ∈ S. The optimal value function is

V ∗(s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S

T (s, a, s′) V ∗(s′)

]
. (2.19)

Implicit policies

Equations 2.15 and 2.18 show how to find the value of a given policy π and provide the

basis for policy-iteration algorithms. The calculation is straightforward and amounts to

solving a system of linear equations of size |S| × |S|.

On the other hand, value-iteration methods employ Equation 2.16 to calculate op-

timal value functions directly. Optimal policies can then be defined implicitly by value

functions. First, we introduce a notion of a Q-function, or Q-value: Q(s, a) is the value

of executing action a at state s, and then following the optimal policy:

Q(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s′) V ∗(s′). (2.20)

The optimal infinite horizon policy is a greedy policy with respect to the optimal value

function V ∗(·):

π∗(s) = arg max
a

Q(s, a). (2.21)

Chapter 2. POMDP solution methods 14

Stochastic policies

A stochastic infinite horizon MDP policy is a generalization of a deterministic policy;

instead of prescribing a single action to a state, it assigns a distribution over all actions

to a state. That is, a stochastic policy

ψ : S 7→ ∆(A) (2.22)

maps a state to a probability distribution over actions; ψ(s, a) is the probability that

action a will be executed at state s. By incorporating expectation over actions, we can

rewrite the Equation 2.18 for stochastic policies in a straightforward manner:

V ψ(s) =
∑
a∈A

ψ(s, a) R(s, a) + γ
∑
s′, a

ψ(s, a) T (s, a, s′) V ψ(s′). (2.23)

While stochastic policies have no advantage for infinite horizon MDPs, we will use

them in solving partially observable MDPs. Making policies stochastic allows to convert

the discrete action space into a continuous space of distributions over actions. We can

then optimize the value function using continuous optimization techniques.

2.2.2 POMDP policy trees

In partially observable environments, an agent can only base its decisions on the history of

its actions and observations. Instead of a simple mapping from system states to actions,

a generic POMDP policy assumes a more complicated form.

As for MDPs, we will first consider finite horizon policies. With one stage left, all

an agent can do is to execute an action; with two stages left, it can execute an action,

receive an observation, and then execute the final action. For a finite horizon of length

H , a policy is a tree of height H . Since the number of actions and observations is finite,

the set of all policies for horizon H can be represented by a finite set of policy trees.

Figure 2.3 illustrates the concept of a t-horizon policy tree. Each node prescribes an

action to be taken at a particular stage; then, an observation received determines the

Chapter 2. POMDP solution methods 15

t−1 stages to go

t stages to go

1 stage to go

o0 o1 oN

o0 oN

A A A

A

A A

A

o1

A

Figure 2.3: A policy tree for horizon t. For each observation, there is a branch to nodes at a

lower level. Each node can be labeled with any action from the set A.

branch to follow. A policy tree for a horizon of length H contains

t=H−1∑
t=0

|O|t =
|O|H − 1

|O| − 1
(2.24)

nodes. At each node, there are |A| choices of actions. Therefore, the size of the set of all

possible H-horizon policy trees is

|A|
|O|H−1
|O|−1 . (2.25)

We will now present a recursive definition of policy trees using an important notion

of conditional plans. A conditional plan σ ∈ Γ is a pair 〈a, ν〉 where a ∈ A is an action,

and ν : O 7→ Γ is an observation strategy. The set of all observation strategies will be

denoted as ΓO; obviously, its size is |Γ||O|.

A particular conditional plan tells an agent what action to perform, and what to do

next contingent on an observation received. Let Γt be the set of all conditional plans

available to an agent with t stages left:

Γt = {〈a, νt〉 | a ∈ A, νt ∈ ΓO
t−1}. (2.26)

Chapter 2. POMDP solution methods 16

In this case, νt : O 7→ Γt−1 is a stage-dependent observation strategy. As a tree of height

t can be defined recursively in terms of its subtrees of height t − 1, so the conditional

plans of horizon t can be defined in terms of conditional plans of horizon t−1. At the last

time step, a conditional plan simply returns an action. A policy tree therefore directly

corresponds to a conditional plan. We will use the set Γt to denote both the set of t-step

policy trees and the equivalent set of conditional plans.

Representing policy trees as conditional plans allows us to write down a recursive

expression for their value function. The value function of a non-stationary policy πt

represented by a t-horizon conditional plan σt = 〈a, νt〉 is

V π
0 (s) = R(s, σ0(s)),

V π
t (s) = V σt

t (s) = R(s, a) + γ
∑
s′∈S

T (s, a, s′)
∑
o∈O

Z(s′, a, o) V νt(o)
t−1 (s′),

(2.27)

where σ0(s) is the action to be executed at the last stage.

Since the actual system state is not fully known, we need to calculate the value of

a particular policy tree with respect to a (initial) belief state b. Such value is just an

expectation of executing the conditional plan σt at each state s ∈ S:

V π
t (b) = V σt

t (b) =
∑
s∈S

b(s)V σt
t (s). (2.28)

The optimal t-step value function for the belief state b can be found simply by enu-

merating all the possible policy trees in the set Γt:

V ∗
t (b) = max

σ∈Γt

∑
s∈S

b(s)V σ
t (s). (2.29)

Thus, the t-step value function for the continuous belief simplex B can in principle be

represented by a finite (although doubly exponential in t!) set of conditional plans and

a max operator. The next section discusses some ways of making such a representation

more tractable.

Chapter 2. POMDP solution methods 17

2.2.3 α-vectors and belief state MDPs

The previous Equation 2.29 actually illustrates the fact that the optimal t-step POMDP

value function is piecewise linear and convex [Son71, Son78]. From Equation 2.28 we can

see that the value of any policy tree V σ
t is linear in b; hence, from Equation 2.29, V ∗

t is

simply the upper surface of the collection of value functions of policies in Γt.

Let ασ be a vector of size |S| whose entries are the values of the conditional plan σ

(or, values of a policy tree corresponding to σ) for each state s:

ασ = [V σ(s0), V
σ(s1), . . . , V

σ(sN)]. (2.30)

Equation 2.29 can then be rewritten in terms of α-vectors :

V ∗
t (b) = max

σ∈Γt

∑
s∈S

b(s)ασ(s) = max
α∈Vt

∑
s∈S

b(s) α(s). (2.31)

Here, the set Vt contains all t-step α-vectors ; these vectors correspond to t-step policy

trees and are sufficient to define the optimal t-horizon value function.

The optimal value function Vt is represented by the upper surface of the α-vectors

in Vt (see Figure 2.4). Although in the worst case any policy in Γt might be superior

for some belief region, this rarely happens in practice. Many vectors in the set Vt might

be dominated by other vectors, and therefore not needed to represent the optimal value

function. In Figure 2.4, vector α3 is pointwise dominated by α1, whereas vector α1 is

jointly dominated by the useful vectors α0 and α2 together.

Given the set of all α-vectors Vt, it is possible to prune it down to a parsimonious

subset V−
t that represents the same optimal value function V ∗

t :

V ∗
t (b) = max

α∈Vt

∑
s∈S

b(s) α(s) = max
α∈V−

t

∑
s∈S

b(s) α(s). (2.32)

In a parsimonious set, all α-vectors (or corresponding policy trees) are useful [KLC98].

A vector α is useful if there is a non-empty belief region R(α,V) over which it dominates

all other vectors, where

R(α,V) = {b | b · α > b · α′, α′ ∈ V − {α}, b ∈ B}. (2.33)

Chapter 2. POMDP solution methods 18

Vt(b)

α0

α2

α3

[b(s0); b(s1)] [0; 1][1; 0]

α1

Figure 2.4: For a two-state POMDP, the belief space B is a one-dimensional unit interval, since

b(s0) = Pr(s0) = 1− Pr(s1). The horizontal axis therefore represents the whole belief space B

on which the value function Vt(b) is defined. Vt(b) is the upper surface of four α-vectors . Only

two of them, α0 and α2, are useful.

The existence of such region can be easily determined using linear programming.

Various value-based POMDP solution algorithms differ in their methods of pruning the

set of all α-vectors Vt to a parsimonious subset V−
t .

Implicit POMDP policies

As we already know, an explicit t-step POMDP policy can be represented by a policy

tree or a recursive conditional plan. Given an initial belief state b0, the optimal t-step

policy can be found by going through the set of all useful policy trees and finding the one

whose value function is maximal with respect to b0 (see Equation 2.31). Then, executing

the finite horizon policy is straightforward: an agent only needs to perform actions at

the nodes, and follow the observation links to policy subtrees.

Instead of keeping all policy trees, it is enough to maintain the set of useful α-vectors

V−
t for each stage t. As for MDPs, an implicit t-step policy can be defined by doing a

greedy one-step lookahead. First, we will define the Q-value function Qt(b, a) as a value

Chapter 2. POMDP solution methods 19

of taking action a at belief state b and continuing optimally for the remaining t−1 stages:

Qt(b, a) =
∑
s∈S

b(s)R(s, a) + γ
∑
o∈O

Pr(o|a, b)V ∗
t−1(b

a
o)), (2.34)

where bao is the belief state that results from b after taking action a and receiving obser-

vation o. As we will see below, it can be calculated using the POMDP model and Bayes’

theorem.

The optimal action to take at b with t stages remaining is simply

π∗(b, t) = arg max
a∈A

Qt(b, a). (2.35)

Belief state MDPs

A finite horizon POMDP policy now becomes a mapping from belief states and stages

to actions:

π : B × T 7→ A. (2.36)

Astrom has shown that a properly updated probability distribution over the state space

S is sufficient to summarize all the observable history of a POMDP agent without loss

of optimality [Ast65]. Therefore, a POMDP can be cast into a framework of a fully

observable MDP where belief states comprise the continuous, but fully observable, MDP

state space. A belief state MDP is therefore a quadruple 〈B,A, T b, Rb〉, where

• B = ∆(S) is the continuous state space.

• A is the action space, which is the same as in the original POMDP.

• T b : B ×A 7→ B is the belief transition function:

T b(b, a, b′) = Pr(b′|b, a)

=
∑
o∈O

Pr(b′|a, b, o)Pr(o|a, b)

=
∑
o∈O

Pr(b′|a, b, o)
∑
s′∈S

Z(s′, a, o)
∑
s∈S

T (s, a, s′) b(s),

(2.37)

Chapter 2. POMDP solution methods 20

where

Pr(b′|a, b, o) =




1 if bao = b′,

0 otherwise.

(2.38)

After action a and observation o, the updated belief bao can be calculated from the

previous belief b:

bao(s
′) =

Z(s′, a, o)
∑

s∈S T (s, a, s′) b(s)
Pr(o|a, b) . (2.39)

• Rb : B ×A 7→ R is the reward function:

Rb(b, a) =
∑
s∈S

b(s)R(s, a). (2.40)

To follow the policy that maps from belief states to actions, the agent simply has to

execute the action prescribed by the policy, and then update its probability distribution

over the system states according to Equation 2.39.

The infinite horizon optimal value function remains convex, but not necessarily piece-

wise linear, although it can be approximated arbitrarily closely by a piecewise linear and

convex function [Son78]. The optimal policy for infinite horizon problems is then just a

stationary mapping from belief space to actions:

π : B 7→ A. (2.41)

It can be extracted by performing a greedy one-step lookahead with respect to the optimal

value function V ∗:

Q(b, a) =
∑
s∈S

b(s)R(s, a) + γ
∑
o∈O

Pr(o|a, b)V ∗(bao),

π∗(b) = arg max
a∈A

Q(b, a).

(2.42)

2.2.4 Finite-state controllers

The optimal infinite horizon value function V ∗ can be approximated arbitrarily closely

by successive finite horizon value functions V0, V1, . . . , Vt, as t → ∞ [Son78]. While all

Chapter 2. POMDP solution methods 21

optimal t-horizon policies are piecewise-linear and convex, this is not always true for

infinite horizon value functions. They remain convex [WH80], but may contain infinitely

many facets.

Some optimal value functions do remain piecewise linear; therefore, at some horizon

t, the two successive value functions Vt and Vt+1 are equal, and therefore, optimal:

V ∗ = Vt = Vt+1. (2.43)

Each vector α in a parsimonious set V∗ that represents the optimal infinite horizon value

function V ∗ has an associated belief space region R(α,V∗) over which it dominates all

other vectors (see Equation 2.33):

R(α,V∗) = {b | b · α > b · α′, α′ ∈ V∗ − {α}, b ∈ B}.

Thus, α-vectors define a partition of the belief space. In addition, it has been shown that

for each partition there is an optimal action [SS73]. When an optimal value function

V ∗ can be represented by a finite set of vectors, all belief states within one region get

transformed to new belief states within the same single belief partition, given the optimal

action and a resulting observation. The set of partitions and belief transitions constitute

a policy graph, where nodes correspond to belief space partitions with optimal actions

attached, and transitions are guided by observations [CKL94].

Another way of understanding the concept of policy graphs is illustrated in an article

by Kaelbling et al. [KLC98]. If the finite horizon value functions Vt and Vt+1 become

equal, at every level above t the corresponding conditional plans have the same value.

Then, it is possible to redraw the observation links from one level to itself as if it were

the succeeding level (see Figure 2.5). Essentially, we can convert non-stationary t-step

policy trees (which are non-cyclic policy graphs) into stationary cyclic policy graphs. Such

policy graphs enable an agent to execute policies simply by doing actions prescribed at the

nodes, and following observation links to successor nodes. The nodes partition the belief

space in a way that, for a given action and observation, all belief states in a particular

Chapter 2. POMDP solution methods 22

listenlistenlisten listen listen listenlistenleft right

listenlistenlisten listen listen listenlistenleft right

listenlistenlisten listen listen listenlistenleft right

t=103

t=104

t=105

Figure 2.5: An example from [KLC98] that illustrates how policy tree branches can be rear-

ranged to form a stationary policy.

region map to a single region (represented by another graph node).2 Therefore, an agent

does not have to explicitly maintain its belief state and perform expensive operations of

updating its beliefs and finding the best α-vector for the belief state. The starting node

is optimized for the initial belief state.

Of course, not all POMDP problems allow for optimal infinite horizon policies to be

represented by a finite policy graph. Since such a graph cannot be extracted from a

suboptimal value function, a policy in such cases is usually defined implicitly by a value

function and calculated using Equation 2.35.

However, limiting the size of a policy provides a tractable way of solving POMDPs

approximately. Although generally the optimal policy depends on the whole history of

observations and actions, one way of facilitating the solution of POMDPs is to assume

that an agent has a finite memory. We can represent this finite memory by a set of internal

2Note that this is true only if the optimal infinite horizon value function can be represented by a
finite number of α-vectors.

Chapter 2. POMDP solution methods 23

states N . The internal states are fully observable; therefore an agent can execute a policy

that maps from internal states to actions.

The action selection function determines what action to execute at each internal

memory state n ∈ N . In addition to the mapping from internal states to actions, we also

need to specify the dynamics of the internal process, i.e., describe the transitions from

one internal state to another. The internal memory states can be viewed as nodes, and

the transitions between nodes will depend on observations received. Together, the set of

nodes and the transition function constitute a policy graph, or a finite-state controller

(FSC).

FSC model

A deterministic policy graph π is a triple 〈N , ψ, η〉, where

• N is a set of controller nodes n, also known as internal memory states.

• ψ : N 7→ A is the action selection function that for each node n prescribes an

action ψ(n).

• η : N ×O 7→ N is the node transition function that for each node and observation

assigns a successor node n′. η(n, ·) is essentially an observation strategy for the

node n, described above when discussing policy trees and conditional plans.

In a stochastic FSC, the action selection function ψ and the internal transition function

η are stochastic. Here,

• ψ : N 7→ ∆(A) is the stochastic action selection function that for each node n

prescribes a distribution over actions:

ψ(n, a) = Pr(At = a|N t = n). (2.44)

• η : N×O 7→ ∆(N) is the stochastic node transition function that for each node and

observation assigns a probability distribution over successor nodes n′; η(n, o, n′) is

Chapter 2. POMDP solution methods 24

Rt

At Ot+1

N t

St St+1

N t+1

Figure 2.6: The joint influence diagram for a policy graph and a POMDP. The sequence of

FSC nodes coupled with POMDP states is Markovian.

the probability of transition from node n to node n′ after observing o′ ∈ O:

η(n, o′, n′) = Pr(N t+1 = n′|N t = n, Ot+1 = o′). (2.45)

2.2.5 Cross-product MDP

In the way that an MDP policy π : S 7→ ∆(A) gives rise to a Markov chain defined

by the transition matrix T , a POMDP policy, represented by a finite graph, is also

sufficient to render the dynamics of a POMDP Markovian. The cross-product between

the POMDP and the finite policy graph is itself a finite MDP, which will be referred

to as the cross-product MDP. The structure of both the POMDP and the policy graph

can be represented in the cross-product MDP. The influence diagram for such a coupled

process is shown in Figure 2.6.

Given a POMDP 〈S,A, T, R,O, Z〉 and a policy graph with the node set N , the new

cross-product MDP 〈S̄, Ā, T̄ , R̄〉 can be described as follows [MKKC99]:

Chapter 2. POMDP solution methods 25

• The state space S̄ = N ×S is the Cartesian product of external system states and

internal memory nodes; it consists of pairs 〈n, s〉, n ∈ N , s ∈ S.

• At each state 〈n, s〉, there is a choice of action a ∈ A, and a conditional observation

strategy ν : O 7→ N , which determines the next internal node for each possible

observation. The new action space Ā = A × NO is therefore a cross product

between A and the space of observation mappings NO. A pair 〈a, ν〉 is a conditional

plan, where a ∈ A is an action and ν ∈ NO is a deterministic observation strategy.

• T̄ : S̄ × Ā 7→ S̄ is the transition function:

T̄ (〈n, s〉, 〈a, ν〉, 〈n′, s′〉) = T (s, a, s′)
∑

o|ν(o)=n′
Z(s′, a, o). (2.46)

• The reward function R̄ : S̄ × Ā 7→ R becomes:

R̄(〈n, s〉, 〈a, ν〉) = R(s, a). (2.47)

Policy graph value

Given a (stochastic) policy graph π = 〈N , ψ, η〉 and a POMDP 〈S,A, T, R,O, Z〉, the

generated sequence of node-state pairs 〈N t, St〉 constitutes a Markov chain [Han97,

Han98a, MKKC99]. In a way analogous to Equation 2.23, the value of a given policy

graph can be calculated using Bellman’s equations:

V̄ π(s̄) = R̄π(s̄) + γ
∑
s̄′
T̄ π(s̄, s̄′) V̄ π(s̄′), (2.48)

where s̄, s̄′ are node-state pairs in S̄, and

• T̄ π is the transition matrix. Given stochastic functions ψ(·) and η(·), the transition

matrix is analogous to Equation 2.23 for MDPs, although now we need to take

expectation not only over actions a, but also over observations o:

T̄ π(〈n, s〉, 〈n′, s′〉) =
∑
a,o

ψ(n, a) η(n, o, n′)T (s, a, s′)Z(s′, a, o). (2.49)

Chapter 2. POMDP solution methods 26

• R̄π is the reward vector:

R̄π(〈n, s〉) =
∑
a

ψ(n, a)R(s, a). (2.50)

2.3 Exact solution algorithms

2.3.1 Value iteration

MDP value iteration

Value iteration for MDPs is a standard method of finding the optimal infinite horizon

policy π∗ using a sequence of optimal finite horizon value functions V ∗
0 , V

∗
1 , . . . , V

∗
t

[How60]. The difference between the optimal value function and the optimal t-horizon

value function goes to zero as t goes to infinity:

lim
t→∞

max
s∈S
|V ∗(s)− V ∗

t (s)| = 0. (2.51)

It turns out that the optimal value function can be calculated in a finite number of

steps given the Bellman error ε, which is the maximum difference (for all states) between

two successive finite horizon value functions. Using Equation 2.16, the value iteration

algorithm for MDPs can be summarized as follows:

• Initialize t = 0 and V0(s) = 0 for all s ∈ S.

• While maxs∈S |Vt+1(s)− Vt(s)| > ε, calculate Vt+1(s) for all states s ∈ S according

to the following equation, and then increment t:

Vt+1(s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S

T (s, a, s′) Vt(s′)

]
.

This algorithm results in an implicit policy (which can be extracted using Equation 2.21)

that is within 2εγ/(1− γ) of the optimal [Bel57].

Chapter 2. POMDP solution methods 27

POMDP value iteration

As described above, any POMDP can be reduced to a continuous belief-state MDP.

Therefore, value iteration can also be used to calculate optimal infinite horizon POMDP

policies:

• Initialize t = 0 and V0(b) = 0 for all b ∈ B.

• While supb∈B |Vt+1(b) − Vt(b)| > ε, calculate Vt+1(b) for all states b ∈ B according

to the following equation, and then increment t:

Vt+1(b) = max
a∈A

[
Rb(b, a) + γ

∑
b′∈B

T b(b, a, b′) Vt(b′)

]
. (2.52)

The previous equation can be rewritten in terms of the original POMDP formulation as

Vt+1(b) = max
a∈A

[∑
s∈S

b(s)R(s, a) + γ
∑
o∈O

Pr(o|a, b)Vt(bao)
]
, (2.53)

where Pr(o|a, b) is

Pr(o|a, b) =
∑
s′∈S

Z(s′, a, o)
∑
s∈S

T (s, a, s′) b(s). (2.54)

Although the belief space is continuous, any optimal finite horizon value function is

piecewise linear and convex and can be represented as a finite set of α-vectors (see Section

2.2.3). Therefore, the essential task of all value-iteration POMDP algorithms is to find

the set Vt+1 representing value function Vt+1, given the previous set of α-vectors Vt.

Various POMDP algorithms differ in how they compute value function representa-

tions. The most naive way is to construct the set of conditional plans Vt+1 by enumerating

all the possible actions and observation mappings to the set Vt. The size of Vt+1 is then

|A||Vt||O|. Since many vectors in Vt might be dominated by others, the optimal t-horizon

value function can be represented by a parsimonious set V−
t . The set V−

t is the smallest

subset of Vt that still represents the same value function V ∗
t ; all α-vectors in V−

t are

useful at some belief state (see Section 2.2.3). To compute Vt+1 (and V−
t+1), we only need

to consider the parsimonious set V−
t .

Chapter 2. POMDP solution methods 28

Some algorithms calculate V−
t+1 by generating Vt+1 of size |A||V−

t ||O|, and then pruning

dominated α-vectors, usually by linear programming. Such algorithms include Monahan’s

algorithm [Mon82, Whi91], and Incremental pruning [ZL96, CLZ97]. Other methods,

such as Sondik’s One-pass [Son71, SS73], Cheng’s Linear Support [Che88], and Witness

[KLC98], build the set V−
t+1 directly from the previous set V−

t , without considering non-

useful conditional plans. Even the fastest of exact value-iteration algorithms can currently

solve only toy problems.

As for MDPs, for a given ε, the implicit policy extracted from the value function is

within 2εγ/(1− γ) of the optimal policy value.

2.3.2 Policy iteration

Policy iteration algorithms proceed by iteratively improving the policies themselves. The

sequence π0, π1, . . . , πt then converges to the optimal infinite horizon policy π∗, as t→∞.

Policy iteration algorithms usually consist of two stages: policy evaluation and policy

improvement.

MDP policy iteration

First, we summarize the policy iteration method for MDPs [How60]:

• Initialize π0(s) = a, for all s ∈ S; a ∈ A is an arbitrary action. Then, repeat the

following policy iteration and improvement steps until the policy does not change

anymore, i.e., πt+1(s) = πt(s) for all states s ∈ S.

• Policy evaluation. Calculate the value of policy πt (using Equation 2.18):

V πt(s) = R(s, πt(s)) + γ
∑
s′∈S

T (s, πt(s), s
′) V πt(s′).

• Policy improvement. For each s ∈ S and a ∈ A, compute the Q-function Qt(s, a):

Qt+1(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s′) V πt(s′). (2.55)

Chapter 2. POMDP solution methods 29

Then, improve the policy πt+1:

πt+1(s) = arg max
a∈A

Qt+1(s, a) for all s ∈ S. (2.56)

Policy iteration tends to converge much faster than value iteration in practice. How-

ever, it performs more computation at each step; policy evaluation step requires a solution

of a |S| × |S| linear system.

POMDP policy iteration

For value iteration, it is important to be able to extract a policy from a value function

(see Section 2.2.3). For policy iteration, it is important to be able to represent a policy so

that its value function can be calculated easily. Here, we will describe a POMDP policy

iteration method that uses an FSC to represent the policy explicitly and independently

of the value function.

The first POMDP policy iteration algorithm was described by Sondik [Son71, Son78].

It used a cumbersome representation of a policy as a mapping from a finite number of

polyhedral belief space regions to actions, and then converted it to an FSC in order to

calculate the policy’s value. Because the conversion between the two representations is

extremely complicated and difficult to implement, Sondik’s policy iteration is not used

in practice.

Hansen proposed a similar approach, where a policy is directly represented by a

finite state controller [Han97, Han98a]. His policy iteration algorithm is analogous to

the policy iteration in MDPs. The policy is initially represented by a deterministic

finite-state controller π0. The algorithm then performs the usual policy iteration steps:

evaluation and improvement. The evaluation of the controller π is straightforward; during

the improvement step, a dynamic programming update transforms the current controller

into an improved one. The sequence of finite-state controllers π0, π1, . . . , πt converges to

the optimal policy π∗ as t→∞.

Chapter 2. POMDP solution methods 30

Policy evaluation

In exact policy iteration, each controller node corresponds to an α-vector in a piecewise-

linear and convex value function representation. Since our policy graph is deterministic,

ψ(n) outputs the action associated with the node n, and η(n, o) is the successor node of

n after receiving observation o. The α-vector representation of a value function can be

calculated using the cross-product MDP evaluation formula from before (Equation 2.48):

V̄ π(〈n, s〉) = R(s, ψ(n)) + γ
∑
s′,o

T (s, ψ(n), s′)Z(s′, ψ(n), o) V̄ π(η(n, o), s′). (2.57)

V̄ π(〈n, s〉) is the value of state s of an α-vector corresponding to the node n:

V̄ π(〈ni, s〉) ≡ αi(s). (2.58)

Thus, evaluating the cross-product MDP for all states s̄ ∈ S̄ is equivalent to computing

a set of α-vectors Vπ. Therefore, policy evaluation step is fairly straightforward and its

running time is proportional to |N × S|2.

Policy improvement

Policy improvement step simply performs a standard dynamic programming backup dur-

ing which the value function V π, represented by a finite set of α-vectors Vπ, gets trans-

formed into an improved value function V ′, represented by another finite set of α-vectors

V ′. Although in the worst case the size of V ′ can be proportional to |A||Vπ||O| = |A||N ||O|

(where |N | is the number of controller nodes at the current iteration), many exact algo-

rithms, such as Witness [CKL94] or Incremental pruning [CLZ97], fare better in practice.

In the policy evaluation step, a set of α-vectors Vπ is calculated from the finite-state

controller π using Equation 2.57. Then, the set V ′ is computed using dynamic program-

ming backup on the set Vπ. The key insight in Hansen’s policy iteration algorithm is

observation that the new improved controller π′ can be constructed from the new set V ′

and the current controller π by following three simple rules:

Chapter 2. POMDP solution methods 31

• For each vector α′ ∈ V ′:

– If the action and successor links of α′ are identical to the action and condi-

tional plan of some node that is already in π, then the same node will remain

unchanged in π′.

– If α′ pointwise dominates some nodes in π, replace those nodes by a node

corresponding to α′, i.e., change the action and successor links to those of the

vector α′.

– Else, add a node to π′ that has the action and observation strategy associated

with α′.

• Prune any node in π that has no corresponding α-vector in V ′ as long as that node

is not reachable from a node with an associated vector in V ′.

If the policy improvement step does not change the FSC, the controller must be

optimal. Of course, this can happen only if the optimal infinite horizon value function

does have a finite representation. Otherwise, a succession of FSCs will approximate the

optimal value function arbitrarily closely; an ε-optimal FSC can be found in a finite

number of iterations [Han98b].

Like MDP policy iteration, POMDP policy iteration in practice requires fewer steps

to converge. Since policy evaluation complexity is negligible compared to the worst-case

exponential complexity of the dynamic-programming improvement step, policy iteration

appears to have a clearer advantage over value iteration for POMDPs [Han98a].

Controllers found by Hansen’s policy iteration are optimized for all possible initial

belief states. The convexity of the value function is preserved because the starting node

maximizes the value for the initial belief state. From the next section onward, we will

usually assume that an initial belief state is known beforehand, and our solutions will

take computational advantage of this fact. Optimal controllers can be much smaller if

they do not need to be optimized for all possible belief states [KLC98, Han98a].

Chapter 2. POMDP solution methods 32

2.4 Gradient-based optimization

Exact methods for solving POMDPs remain highly intractable, in part because optimal

policies can be either very large, or, worse, infinite. For example, in exact policy iteration,

the number of controller nodes might grow doubly exponentially in the horizon length;

in value iteration, it is the number of α-vectors required to represent the value function

that multiplies at the same doubly exponential rate.

An obvious approximation technique is therefore to restrict the set of policies; the

goal is then to find the best policy within that restricted set. Since all policies can be

represented as (possibly infinite) policy graphs, a widely used restriction is to limit the

set of policies to those representable by finite policy graphs, or finite-state controllers, of

some bounded size. This allows to achieve a compromise between the requirement that

courses of action should depend on certain aspects of observable history, and the ability

to control the complexity of the policy space.

Many previous approaches rely on the same general idea. While Hansen’s exact policy

iteration does not place any constraints on the policy graph structure, other techniques

take computational advantage of searching in the space of structurally restricted FSCs.

Littman [Lit94], Jaakola et al. [JSJ95], Baird and Moore [BM99] search for optimal reac-

tive, or memoryless, policies; McCallum [McC95] considers variable-length finite horizon

memory; Wiering and Schmidhuber [WS97] attempt to find sequences of reactive poli-

cies; and, Peshkin et al. [PMK99] constrain the search to external memory policies. All

of these techniques3 are special cases of searching in the space of finite policy graphs.

The restricted policy space that we will consider in this thesis is representable by

a limited size stochastic finite-state controller (see Section 2.2.4). Here, we describe

the details of a gradient-based policy search method, introduced by Meuleau et al.

[MKKC99, MPKK99]. The main idea of gradient-based POMDP policy search methods

3Some of these approaches are applied in a reinforcement learning setting. In this thesis, we assume
that the model of the world is fully known.

Chapter 2. POMDP solution methods 33

is to reformulate the task of finding optimal POMDP policies as a classical non-linear

numerical optimization problem. If the stochastic FSC is appropriately parameterized so

that its value is continuous and differentiable, the gradient of the value function can be

computed analytically in polynomial time with respect to the size of the cross-product

MDP (|N × S|), and used to find locally optimal solutions.

Policy graph value

We can rewrite Equation 2.48, which calculates the value of a stochastic policy graph π,

in a more concise matrix and vector form:

V̄ π = R̄π + γT̄ π V̄ π. (2.59)

V̄ and R̄ are vectors of length |N | |S|, and T̄ is an |N | |S| by |N | |S| matrix. Since T̄ is a

stochastic matrix and the discount factor γ < 1, the matrix I − γT̄ is invertible [Put94];

we can thus solve Equation 2.59 for V̄ :

V̄ π = (I − γT̄ π)−1 R̄π. (2.60)

Notice that V̄ π, T̄ π, and R̄π depend on the policy graph π = 〈N , ψ, η〉. Therefore,

for a given number of nodes |N |, the vector V̄ π could be optimized by choosing the right

functions ψ and η. To convert this problem to a classical non-linear optimization problem,

we need to make sure that the objective function is a scalar as well as appropriately

parameterize the functions ψ and η.

Prior beliefs

The value vector V̄ π contains the total discounted cumulative reward for each system

state s and graph node n. The total expected reward depends on the state and node

in which an agent starts; this could be quantified by an agent’s prior beliefs about the

world. Let b̄0 be an |N | |S| vector of probabilities representing the agent’s prior beliefs

Chapter 2. POMDP solution methods 34

about the states S and policy graph nodes N . That is,

∑
n,s

b̄(〈n, s〉) = 1,

b̄(〈n, s〉) ≥ 0 for all n ∈ N , s ∈ S.
(2.61)

Then, the total expected cumulative discounted reward Eπ is just

Eπ = b̄0 · V̄ π. (2.62)

To simplify the problem, we will assume that the agent always starts in node n0; it is a

valid simplification if the initial policy graph structure is symmetric for all nodes. The

agent’s prior knowledge about the world is summarized by the belief vector b0. Therefore,

b̄(〈n, s〉) =




b(s), if n = n0,

0, otherwise.
(2.63)

Soft-max parameterization

To parameterize the functions ψ and η, we will employ a commonly used soft-max distri-

bution function [MPKK99, AB02]. Let xψ and xη be parameter vectors for the respective

functions ψ and η. xψ will be indexed by a node n and an action a; xη will be indexed by

a node n, an observation o, and the successor node n′. We will use the notation xψ[n, a] to

denote the ψ parameter indexed by n, a, and xη[n, o, n′] will be the η parameter indexed

by n, o, n′. Then,

ψ(n, a) = ψ(a|n;xψ) =
ex

ψ [n,a]∑
ā∈A e

xψ [n,ā]
, (2.64)

η(n, o, n′) = η(n′|n, o;xη) =
ex

η [n,o,n′]∑
n̄′∈N exη [n,o,n̄′] . (2.65)

Chapter 2. POMDP solution methods 35

Because we use soft-max, the parameterized functions ψ and η still represent probability

distributions; that is,

∑
a∈A

ψ(a|n;xψ) = 1,

∑
n′∈N

η(n′|o, n;xη) = 1,

ψ(a|n;xψ) ≥ 0 for all a ∈ A, n ∈ N ,

η(n′|n, o;xη) ≥ 0 for all n, n′ ∈ N , o ∈ O.

(2.66)

Objective function

Let x denote the combined vector of parameters xψ and xη. By substituting Equation

2.60 into 2.62, we finally get an unconstrained continuous objective function f(·) of

parameters x:

f(x) = b̄0 (I − γT̄ π)−1 R̄π, (2.67)

where (see Equations 2.49 and 2.50)

T̄ π(〈n, s〉, 〈n′, s′〉) =
∑
a,o

ψ(a|n;xψ) η(n′|n, o;xη)T (s, a, s′)Z(s′, a, o), (2.68)

R̄π(〈n, s〉) =
∑
a

ψ(a|n;xψ)R(s, a), (2.69)

and b̄0, T (·), R(·), Z(·) are supplied by the POMDP model. The number of parameters

|x| depends on the POMDP model and the size of the policy graph (i.e., the size of the

cross-product MDP):

|x| = |xψ|+ |xη| = |N ||A|+ |N ||O||N |. (2.70)

This presents two advantages to gradient-based methods of solving POMDPs: the number

of parameters does not depend on the size of the state space S, and the size of internal

memory N can be controlled by a user.

Chapter 2. POMDP solution methods 36

Gradient calculation

Since the objective function f(x) is a complicated series matrix expansion with respect

to its parameters, function value based optimization techniques will be ineffective. To

perform numerical optimization, we will need to employ first-order information about

our objective function.

Because of the soft-max parameterization, the gradient of f(x) can be calculated

analytically. From Equation 2.62,

∂f

∂x
= b̄0

∂V̄

∂x
. (2.71)

From Equation 2.60,

∂V̄

∂x
= (I − γT̄)−1

[
∂R̄

∂x
+ γ

∂T̄

∂x
(I − γT̄)−1 R̄

]
. (2.72)

Partial derivatives with respect to T̄ and R̄ can be calculated from Equations 2.68 and 2.69:

∂T̄

∂xψ
=

∑
a,o

∂ψ(a|n;xψ)

∂xψ
η(n, o, n′)T (s, a, s′)Z(s′, a, o), (2.73)

∂T̄

∂xη
=

∑
a,o

ψ(n, a)
∂η(n′|n, o;xη)

∂xη
T (s, a, s′)Z(s′, a, o), (2.74)

∂R̄

∂xψ
=

∑
a

∂ψ(a|n;xψ)

∂xψ
R(s, a), (2.75)

∂R̄

∂xη
= 0. (2.76)

Finally, we can find the derivatives of ψ and η from the analytical expression of the

soft-max function (see Equations 2.64 and 2.65):

∂ψ(a|n;xψ)

∂xψ[n̄, ā]
=




(1− ψ(n, a))ψ(n, a), if n = n̄, a = ā,

−ψ(n, a)ψ(n̄, a), if n = n̄, a 6= ā,

0, if n 6= n̄.

(2.77)

∂η(n′|n, o;xη)
∂xη [n̄, ō, n̄′]

=




(1− η(n, o, n′)) η(n, o, n′), if n = n̄, o = ō, n′ = n̄′,

−η(n, o, n′) η(n̄, o, n′), if n = n̄, o = ō, n′ 6= n̄′,

0, if n 6= n̄ or o 6= ō.

(2.78)

Chapter 2. POMDP solution methods 37

Local optimization

Many numerical optimization techniques, such as steepest-descent, quasi-Newton or con-

jugate gradient, can be used to search for local minima employing the analytically cal-

culated gradient information. All the experiments reported in this thesis used the quasi-

Newton method with Broyden, Fletcher, Goldfrab and Shanno (BFGS) update and quad-

cubic line search, implemented in Matlab’s Optimization Toolbox [Mat02].

Chapter 3

Stochastic local search procedure

In this chapter, we present a new approach to the approximate solution of POMDPs

using finite-state controllers. Using certain heuristics that follow some of the sequential

reasoning inherent in dynamic programming approaches, we supplement gradient ascent

with stochastic local search techniques. This allows us to solve some problems where

gradient ascent methods get stuck in very poor local suboptima.

3.1 Motivating example

We now introduce a simple problem containing typical local optima which gradient ascent

methods commonly fail to overcome. This example should also help understand intuitions

behind the actual local search algorithm. Such intuitions will be formalized and described

in the following sections of this chapter.

Consider a very simple planning problem in which the optimal solution consists of

performing a certain action c until the precondition p for a subsequent action d is ob-

served; action d then leads to a high-reward goal state g. The actions can be stochastic

in their effect and the observations can be noisy. Furthermore, actions c and d are very

costly, but the reward associated with the goal g more than compensates for their ex-

pected costs; d only achieves g (with reasonable probability) if p is true; p is only made

38

Chapter 3. Stochastic local search procedure 39

n1 n2

op

*op̄

dc

Figure 3.1: An optimal FSC for the Planning problem.

true by c; all other actions (at any state) have small costs and lead to rewards that are

small relative to the costs of actions c and d, and the reward of the goal state g.

Let’s assume that observation op gets emitted with certainty when the precondition

p is true; op̄ is any other observation. The optimal policy for this POMDP can be

represented using a simple 2-node policy graph shown in Figure 3.1. Starting at node n1,

the best course of action is to execute c until observation op is received. On observation

op, the process moves to the internal state n2, at which action d eventually leads to a

high-reward goal.

Planning POMDP

We can formalize this simple planning problem as a POMDP in the following way. The

state space S consists of four states s0, sp, g, g
′:

• s0 is the starting state at which the precondition p is false. We will assume that

agents have full knowledge of the initial state.

• sp is the state where the precondition p for action d is true.

• g is the high-reward goal state. Reaching g terminates the process and gives an

agent a reward of +500.

Chapter 3. Stochastic local search procedure 40

• g′ is an alternate goal state that gives an agent a reward of +10. One should think

of g′ as summarizing the state space reachable by actions that do not follow the

optimal sequence c, d. The goal g′ is a suboptimal goal; we shall see that gradient

ascent will commonly tend to select actions that lead to such suboptimal states.

The action space A consists of actions c, d, a0, a1, . . . , ak. k actions ai lead to sub-

optimal regions summarized by the goal state g′. In our simple model, executing any

action ai will cause the transition to g′. Actions c and d are costly (each costs -100), but

executing the sequence c, d enables to achieve a reward of +500 at goal state g. Action c

has a high probability of causing a transition to state sp. Action d has high cost (-1000)

unless executed at state sp; it can then achieve goal g with high probability. For the

following concrete POMDP, we will set k = 18; that is, the action space size is 20.

To keep things simple, let’s assume that transitions and observations are deterministic,

and the discount factor is very close to 1. Then, the optimal policy of executing the action

sequence c, d has a value of +300 = 500 − 100 − 100; a suboptimal policy of executing

an action ai at the starting node has a value of +10 (see Figure 3.1).

Why GA fails

Quite surprisingly, gradient ascent will rarely find a policy represented by the optimal

2-node controller shown in Figure 3.1. In 100,000 GA trials of a 2-node controller, 96.29%

of them resulted in suboptimal policies of value +10; allowing for more capacity did not

help: with 10-node controllers, the failure rate was 97.47%. If the action space is large

enough, a random instantiation of this FSC is very unlikely to be optimal or serve as a

good start point for gradient ascent.1 Suppose we attempt to solve this problem using

gradient ascent, starting from some random initial policy graph, and suppose no node

selects action c or d with significant probability (if the number of “other” actions ai is

1To keep things simple, we focus on a small two-action sequence; for longer sequences, typical of
planning problems, the odds of a random initial FSC including any significant subsequence is negligible.

Chapter 3. Stochastic local search procedure 41

goalB

goalA

so

spa

a
d

c

d [-1000]

[-100]

[-100]

[+10]

[+1000]

Figure 3.2: Simple planning problem

large, this is a very reasonable assumption). Since the probability of c being executed

is small, the probability of the precondition p being true at any belief state reachable

using the current FSC is small; hence, increasing the probability of d at any node will

decrease controller value, preventing GA from moving in that direction. Similarly, since

d is unlikely to be executed, the value of increasing the probability of c at any node is

negative, preventing GA from moving in that direction. The safe alternative of selecting

an action ai seems more attractive. Indeed, the nature of this problem is such that GA

will be forced to move away from the optimal FSC. The sequential nature of the problem,

and the fact that the actions that make up the optimal policy are undesirable unless their

counterparts are in place, make the landscape very hard to navigate using GA.

Intuitively, action d would be considered useful at a belief state in which precondition

p held (i.e., where probability of being in state sp is high enough). Unfortunately, since

c is never executed, such a belief state is unreachable given the current FSC. However,

it is easy to verify that action d is good at some belief state in the context of the current

Chapter 3. Stochastic local search procedure 42

controller. More precisely, a conditional plan 〈d, ν〉 installed at node n2—where, e.g., ν

loops back to the same node n2 for all observations—would have high value in any belief

state where p is sufficiently probable. Then, if d is already installed at node n2, choosing

c at n1 and transitioning to n2 on receiving observation op would attain high value.

How to choose moves

So, how should we identify and select conditional plans, such as σ = 〈d, ν〉, that are

necessary for the optimal controller? We already saw that GA would not recommend this

plan because it is not useful at any belief region that is reachable from the starting belief

state b0 = [1; 0] given the current controller (let b = [Pr(s0);Pr(sp)] be a representation

of agent’s beliefs; we allow uncertainty only over non-goal states). However, this plan is

very good at a belief region around the belief state [0; 1], which is not reachable if action

c is not executed at node n1. Therefore, we can ask the following question:

Is there a belief state bσ at which the plan σ is better than any other plan σ′?

A straightforward linear program (LP) can not only answer this question, but also

return the largest difference δσ by which a conditional plan σ is better than any other

plan σ′:

δσ = max
b

[
Q(b, σ)−max

σ′∈Σ
Q(b, σ′)

]
. (3.1)

Let Bσ be the belief region such that any belief state in Bσ maximizes this expresion for

δσ. We define bσ as the belief state that maximizes the Q-value of the plan σ with the

constraint that bσ has to be in the Bσ region:

bσ = arg max
b∈Bσ

Q(b, σ). (3.2)

The notions of δ-values and Q-value maximizing belief states bσ will be described in detail

in Section 3.2.3.

Assuming we start with a FSC initialized with uniform action and transition function

distributions, we get the δ-values for all conditional plans, which are listed Table 3.1.

Chapter 3. Stochastic local search procedure 43

For our simple POMDP with two observations, a shorthand notation for the conditional

Table 3.1: δ and Q-value heuristics for conditional plans

Conditional plan σ δσ Q-value at bσ bσ

〈c, [n1 n1]〉 -84.7368 -74.7368 [1;0]

〈d, [n1 n1]〉 0 400 [0;1]

〈ai, [n1 n1]〉 0 10 [1;0]

〈c, [n1 n2]〉 -84.7368 -74.7368 [1;0]

〈d, [n1 n2]〉 0 400 [0;1]

〈ai, [n1 n2]〉 0 10 [1;0]

〈c, [n2 n1]〉 -84.7368 -74.7368 [1;0]

〈d, [n2 n1]〉 0 400 [0;1]

〈ai, [n2 n1]〉 0 10 [1;0]

〈c, [n2 n2]〉 -84.7368 -74.7368 [1;0]

〈d, [n2 n2]〉 0 400 [0;1]

〈ai, [n2 n2]〉 0 10 [1;0]

plan 〈a, [n m]〉 means “execute action a, and on observation op̄ go to node n, while on

observation op go to node m”.

The δσ column in this table answers our question. If δσ ≥ 0 for the plan σ, then there

is a belief state bσ at which this plan is as good or better than any other plan. Otherwise,

the plan is not very useful given the current controller. For example, there is no belief

state at which executing action c will be a good decision given the current controller.2

On the other hand, just by considering δ-values, any other action seems to be attractive.

Thus, δ-values themselves are not enough to serve as good heuristics for evaluating

2The fact that observation mappings do not seem to matter (only actions do) is an artifact of this
simple problem; in general, full conditional plans will have different values depending on the internal
node transitions.

Chapter 3. Stochastic local search procedure 44

conditional plans (note that because all four plans with action d achieve a value of +400

at belief state [0;1], their δ-value is 0). Both actions ai and d have δ-values of zeros at their

respective Q-value difference maximizing belief states bσ. In order to evaluate conditional

plans, we therefore propose to look at their Q-values at “witness” belief states. In this

case, it is clear that any conditional plan with the action d is much better than the rest,

since they achieve a value of +400 at the witness belief state [0;1]. To pick a conditional

plan, we can therefore stochastically sample from a distribution that is biased by the

heuristic values. It is very likely that one of the conditional plans with action d will get

chosen, since all of them have a heuristic value h(σ) = Q(bσ, σ) of +400, which is much

bigger than the next best value of +10. Let σ∗ = 〈d, [n2 n2]〉 be the chosen conditional

plan.

Our local search procedure will consider adjustments to the FSC of this type: if a plan

has high value at some belief state b, even if it can’t be realized by the current controller,

we will consider making that move, i.e., adjusting the FSC parameters in that direction.

Before we formalize and explain various possibilities for moves in the FSC space, let us

define a move m = 〈n2, σ
∗〉 which consists of installing a conditional plan σ∗ at node

n2. Of course, if we make this move by adjusting the parameters at node n2 toward the

plan 〈d, [n2 n2]〉, we decrease the value of the FSC. For example, the initial value of the

controller when initialized with uniform distributions was -47.0914; after the move m,

its value became -1808.90. Should we subsequently resort to moving in a direction that

improves FSC value, we would naturally want to “undo” this move. For this reason,

moves of this type will be held on a tabu list for some period of time. By doing this, we

will give the algorithm a chance to “catch up” to the move. Specifically, since the plan

σ∗ at node n2 has high value at belief states near bσ
∗
, by holding this node fixed, we give

the FSC a chance to find a policy for the rest of the FSC that will induce this region of

belief space at node n2. In this example, by holding n2 fixed, the plan 〈c, [n1 n2]〉 at node

n1 will now look attractive (indeed, with n2 fixed, GA would move in this direction). In

Chapter 3. Stochastic local search procedure 45

a sense, this process simulates the reasoning inherent in value iteration over belief space.

After executing the move m (i.e., installing the deterministic conditional plan σ∗ at

node n2), we get the heuristic values for conditional plans in the modified controller,

which are displayed in Table 3.2. These new heuristic values provide new insights about

Table 3.2: δ and Q-value heuristics for conditional plans after a move

Conditional plan σ δσ Q-value at bσ bσ

〈c, [n1 n1]〉 -361.66 -65.22 [1;0]

〈d, [n1 n1]〉 0 400 [0;1]

〈ai, [n1 n1]〉 -286.44 10 [1;0]

〈c, [n1 n2]〉 0 296.44 [1;0]

〈d, [n1 n2]〉 0 400 [0;1]

〈ai, [n1 n2]〉 0 10 [1;0]

〈c, [n2 n1]〉 -361.66 -65.22 [1;0]

〈d, [n2 n1]〉 0 400 [0;1]

〈ai, [n2 n1]〉 0 10 [1;0]

〈c, [n2 n2]〉 0 296.44 [1;0]

〈d, [n2 n2]〉 0 400 [0;1]

〈ai, [n2 n2]〉 0 10 [1;0]

our local search procedure. Any plan with action d still seems the most attractive even

though we already have the action d at node n2. Installing such plans at other nodes

would, intuitively, waste the controller “capacity”. Since node n2 already represents a

belief region near the witness belief state bσ
∗
, we can disregard any conditional plans

whose witness belief states are already represented in the current controller.

Plans 〈c, [n1 n2]〉 and 〈c, [n2 n2]〉 now look the most attractive; installing them at

node n1 would actually result in the optimal controller. This toy example, however, is

Chapter 3. Stochastic local search procedure 46

misleading because our starting belief state [1;0] happens to be the same as the witness

belief state for these two plans. In most cases, however, witness belief states might not

be reachable given the current controller. Thus, after instantiating some controller nodes

with potentially useful plans, we will have to either search for the plans that are good

with respect to the initial belief state b0 or hope that gradient ascent will manage to

find better controllers after some nodes were chosen to represent potentially valuable

conditional plans. In our algorithm, we actually do both.

In the following sections, we make such high-level intuitions more precise, identify

further issues that must be addressed, and incorporate them into a stochastic local search

procedure.

3.2 Stochastic local search framework

In this section we describe how our algorithm fits in the general framework of stochastic

local search methods, and explain its key details and the relevant terminology.

Stochastic local search (SLS) has become a popular and successful approach to solv-

ing hard combinatorial optimization problems. Many techniques, from simple iterative

improvement to evolutionary algorithms, fall under an umbrella of SLS methods. Here,

we introduce the general definition of SLS, and show how the POMDP policy search can

be cast into the SLS framework.

Given a combinatorial problem, an SLS algorithm for solving its arbitrary instance is

defined by the search space, a set of feasible solutions, a neighborhood relation, a step

function, an initialization function, a termination predicate, an objective function, and

an evaluation function [Hoo98].

Below, we outline our POMDP algorithm in SLS terminology.

• The search space is the set of finite state controllers of a given size |N |, parameter-

ized by the stochastic action selection function ψ and the node transition function η.

Chapter 3. Stochastic local search procedure 47

• All FSCs in the search space are valid POMDP policy representations, and there-

fore, are feasible solutions.

• The neighborhood of a specific FSC can be defined as the set of all the controllers

that can be reached by making a single move. Therefore, the neighborhood relation

depends on what constitutes a move in the search space. Different alternatives for

moves will be discussed later; generally, the move will be a change of either action

or transition distributions (or both) of a single controller node. Gradient ascent,

however, modifies distributions at all policy graph nodes at once in the direction

of the gradient.

• The step function assigns each member of the search space a probability over its

neighbors. In our case, the step function will be defined implicitly by the internal

parameters of a procedure that chooses moves.

• Our initialization function returns a randomly initialized finite state controller.

• The objective function is the expected controller value with respect to the initial

belief state b0 (see Equation 2.67). It is used by gradient ascent to find locally

optimal solutions. However, in order to escape from such local optima, we will

need a different evaluation function.

• An evaluation function also maps search space positions into real numbers; however,

it can be different from the objective function. The evaluation function is used

for assessing or ranking candidate neighborhood solutions, and provides guidance

toward high-quality, or optimal solutions. In our algorithm, we use a Q-value

heuristic function h(·) to evaluate moves in the search space. Moves that have high

heuristic value lead to potentially valuable FSCs; therefore, the evaluation function

is defined implicitly by the heuristic function h(·), which will be described in detail

later.

Chapter 3. Stochastic local search procedure 48

3.2.1 Moves, conditional plans, actions

Such terms as moves, actions, and conditional plans will be used extensively, so we need

to make their meaning as precise as possible. Some of the notation was already explained

in the cross-product MDP section (2.2.5) above.

action Action a ∈ A is one of the direct actions available to the agent.

observation mapping (strategy) Conditional observation mapping ν : O 7→ N de-

termines the internal transitions between nodes given observations. The set of

observation mappings is NO.

conditional plan Conditional plan ā = σ = 〈a, ν〉, a ∈ A, ν ∈ NO, is an element of the

cross-product MDP action space Ā and consists of an action a and a deterministic

observation mapping ν. We can apply a conditional plan to any node, but by itself

a conditional plan is not “attached” to any particular node n ∈ N .

move Deterministically installing a specific action, observation mapping, or a condi-

tional plan at a specific policy graph node n (or changing respective probabilities

toward a particular action, observation, or a conditional plan in a stochastic graph)

could constitute a local move in the FSC space. While all these alternatives are

worth considering, in our actual implementation a move m = 〈n, σ〉 is a conditional

plan σ ascribed to particular node n. If M is the set of such deterministic local

moves in the space of finite graphs, then its size is |N ||A||N ||O|.

Executing moves

Making a move m = 〈n, σ〉 involves changing the parameters of the stochastic functions

ψ and η for a node n. While we could simply set the probability of the conditional plan

σ to 1, during a stochastic search, it might be desirable to retain stochasticity in an

POMDP policy. If we allow non-zero probabilities to other plans σ′ at the node n, the

Chapter 3. Stochastic local search procedure 49

next local search step will still consider other actions and observation strategies, if their

value is high (even though their probability is low).

Therefore, when we make a move, the parameters at the node n are adjusted in

the direction of the plan σ. In practice, we increase the probability of σ by a fraction

moveDist of the difference between the current probability of σ and 1, and then normalize

the probabilities of the remaining plans. If σ = 〈a, ν〉, the FSC functions ψ and η get

modified as follows:

Algorithm 1 Function makeMove
Input:
ψ // action selection function
η // observation strategy function
n // node at which the move is executed
〈a, ν〉 // conditional plan to be installed

Output:
ψ′ // new action selection function
η′ // new observation strategy function

ψ(n, ·)← changeDistribution(ψ(n, ·), a)
for each o ∈ O do
η(n, o, ·))← changeDistribution(η(n, o, ·), ν(o))

end for

Algorithm 2 Function changeDistribution
Input:

global changeDist // the move fraction parameter
dist // original probability distribution
index // index of outcome whose probability will change

Output:
newDist // new probability distribution

oldSum← 1− dist(index) // probability of all other outcomes
newDist(index)← dist(index) + (1− dist(index)) ·moveDist
newSum← 1− newDist(index) // probability of all other outcomes

// normalize probabilities of other outcomes
for each outcomeIndex 6= index do
newDist(outcomeIndex)← dist(outcomeIndex) · newSum

oldSum

end for

The fraction parameter moveDist would usually range from 0.5 to 1 (deterministic

Chapter 3. Stochastic local search procedure 50

move). In our experiments, we found out that moveDist = 0.95 works well; such high

value does not necessarily mean that nearly deterministic moves are better; it could

simply be due to the structure of the limited number of POMDP problems we tested.

3.2.2 Q-values

The Q-value of a move (or action, or conditional plan) at a state s ∈ S is determined by

its immediate reward at s, and the value of executing the current policy afterward.

Here, we define several Q-values for several possible interpretations of moves in the

finite policy graph space. In our actual algorithm, a move will correspond to installing a

conditional plan at a specific node; however, it is worthwhile considering other possibili-

ties.

Conditional plans

Let’s assume that the current policy graph is π, and its value is V π. First, we consider

the set of full conditional plans Σ. A conditional plan σ is a pair 〈a, ν〉, where a ∈ A and

ν ∈ NO. The Q-value Qπ(s̄, σ) is simply

Qπ(s̄, σ) = R̄π(s̄) + γ
∑
s̄′
T̄ π(s̄, s̄′)V π(s̄′). (3.3)

In terms of the underlying POMDP, we get:

Qπ(〈n, s〉, 〈a, ν〉) = R(s, a) + γ
∑
n′, s′

T (s, a, s′)
∑

o|ν(o)=n′
Z(s′, a, o) V π(〈n′, s′〉)

= R(s, a) + γ
∑
s′
T (s, a, s′)

∑
n′
V π(〈n′, s′〉)

∑
o|ν(o)=n′

Z(s′, a, o).
(3.4)

Notice that the expression for Qπ(〈n, s〉, 〈a, ν〉) does not depend on the node n, since ν

is a conditional observation mapping. Thus, for conditional plans σ we can use simpler

notation:

Qπ(〈·, s〉, σ) = Qπ(s, σ), (3.5)

Chapter 3. Stochastic local search procedure 51

and

Qπ(s,m) = Qπ(s, σ), (3.6)

where m = 〈n, σ〉 ∈ M is a move (node + conditional plan), as defined above.

Using full conditional plans as moves has both its advantages and disadvantages.

The biggest problem is that the number of such plans is exponentially dependent on the

number of observations:

|M| = |A||N ||O|. (3.7)

Therefore, for bigger observation spaces, we need to resort to sampling or limiting the

graph connectivity in order to enumerate such moves. On the other hand, the combinato-

rial nature of full conditional plans helps overcome the local optima problems of gradient

ascent.

Partial observation strategies

It is also useful to define a Q-value Qπ(·, 〈a, ρ〉) for an action a ∈ A and a partial

observation strategy ρ ∈ O ×N . If ρ = 〈o, ñ〉, then the probability distributions remain

the same for all observations except o; if an agent receives observation o, it transitions

deterministically to the node ñ.

Qπ(〈n, s〉, 〈a, ρ〉) = R(s, a) + γ
∑
n′, s′

T 〈a,ρ〉(〈n, s〉, 〈n′, s′〉) V π(〈n′, s′〉), (3.8)

where

T 〈a,ρ〉(〈n, s〉, 〈n′, s′〉) = T (s, a, s′)

[
I(ρ, n′)Z(s′, a, o) +

∑
o′ 6=o

η(n, o′, n′)Z(s′, a, o′)

]
. (3.9)

I(ρ, n′) is an indicator variable:

I(ρ, n′) = I(〈o, ñ〉, n′) =




1 iff ñ = n′,

0 otherwise.

(3.10)

Chapter 3. Stochastic local search procedure 52

The move space now becomes of manageable size:

|M| = |N ||A||O||N |. (3.11)

The Q-value does depend on the node at which action a and partial observation mapping

ρ get installed since n appears on the right-hand side of Equation 3.8.

Such moves are less likely to lead to local optima than moves that consider changing

action and partial observation strategies independently (as GA does). However, our

experience has shown that in most cases they still exhibit similar suboptimal behavior

as gradient ascent.

3.2.3 Heuristic function

We would like to find a heuristic for evaluating a set of possible moves in the policy graph

space. From now on, we will assume that our moves are full conditional plans ascribed

to a controller node. However, since the Q-value does not depend on the node, given any

conditional plan, the value of the move that includes that plan is the same for all FSC

nodes n ∈ N .

The following description of the linear program also works if moves are elementary

actions A or a pair of an action and a partial observation mapping for a particular

observation o ∈ O ; in the latter two cases, we have to evaluate moves at specific nodes,

since the Q-value of such moves depends not only on the underlying system state s, but

also on the policy graph node n.

We can either consider all possible moves M or a subset of moves M′ ⊆M, in case

we either have some additional heuristic for limiting the set of moves, or we just resign to

sampling from the setM for computational reasons. For each move m ∈ M′ we need to

have its Q-value vector Qπ(·, m) for all states s. We will assume that our current policy

graph is π and drop the superscript, i.e., Qπ(s,m) ≡ Q(s,m).

We will also use the notation Q(b,m) to denote the Q-value of the move m at belief

Chapter 3. Stochastic local search procedure 53

[b(s0); b(s1)] [0; 1][1; 0]

σ0

σ1
σ2

σ3

δσ0

δσ2

h(σ0)

h(σ2)

h(σ3)
δσ3

Figure 3.3: Heuristic and δ-values for several conditional plans.

state b. The value of Q(b,m) is simply the expectation with respect to b:

Q(b,m) =
∑
s∈S

b(s)Q(s,m). (3.12)

Gradient-based approaches fall into the category of methods that consider the value

of moves with respect to belief states b that are reachable from the initial belief state b0 in

the current policy graph. However, other moves could be potentially useful at other belief

states, if the controller structure changed so that those belief states became reachable

from b0. Our goal is to rank conditional plans according to a heuristic function that takes

into account the potential value of a plan at belief states that might not be reachable in

the current FSC. Therefore, we propose the following heuristic for evaluating moves: For

each move m ∈ M′,

1 Find the belief state bm1 such that the difference between the Q-value of the move

m and any other move inM′ is maximized:

bm1 = arg max
b

[
Q(b,m)−max

m′
Q(b,m′)

]
, m′ ∈M′ − {m}. (3.13)

Chapter 3. Stochastic local search procedure 54

We will denote by δm the maximum difference between the Q-value of m and any

other move at belief state bm1 :

δm = Q(bm1 , m)−max
m′

Q(bm1 , m
′), for all m′ ∈M′ − {m}. (3.14)

2 If δm ≥ 0, then there exists a belief state bm1 at which the move m is as good as

any other, so we should consider it. However, there might be the whole region of

belief states that yield the same δm; we denote it as Bm. Since the magnitude of

δm is less significant, we would like to find the best possible Q-value for the move

m subject to the constraint that b ∈ Bm, i.e. we optimize within belief states that

achieve δm. Our heuristic value for the move m is thus h(m) = Q(bm2 , m), where

bm2 = arg max
b

Q(b,m), b ∈ Bm, (3.15)

or, equivalently, given δm from Step 1,

bm2 = arg max
b

Q(b,m), (3.16)

subject to Q(b,m) ≥ max
m′

Q(b,m′) + δm, m′ ∈ M′ − {m}.

bm ≡ bm2 can be thought of as a “witness” belief state for the move m. The second

equation allows to formulate the problem as a linear program. Thus, we can calculate

the heuristic h(m) for each move m ∈ M′ by sequentially solving two linear programs

with |S|+ 1 variables and |M′| − 1 constraints.

Figure 3.3 plots the Q-value vectors for a hypothetical POMDP. Intuitively, we would

like to select the plan σ0, since it is valuable over a large belief region Bσ0 . Its δ-value

δσ0 , however, is quite small compared to δσ2 and δσ3 , because of the parallel vector σ1.

Therefore, we prefer to look at Q-values. After the first LP, the witness belief state

returned by the LP algorithm may lie anywhere within the region Bσ0 ; Q-values in this

region range from h(σ3) to h(σ0), which makes it hard to differentiate among the three

plans σ0, σ2, and σ3. The second LP maximizes the Q-value of σ0 within the region Bσ0 ;

the maximum is the heuristic value h(σ0).

Chapter 3. Stochastic local search procedure 55

0 5 10 15 20 25 30 35 40 45 50
−1000

−800

−600

−400

−200

0

200

Conditional plans

Q
−

va
lu

e

Planning problem

Q−values after 1st LP
Final Q−values

Figure 3.4: Q-values of 50 conditional plans after the 1st and 2nd LP (from the Planning

POMDP of Section 4.2).

Figure 3.4 shows the Q-values of 50 conditional plans from the Planning POMDP

described in Section 4.2. After the first LP, we get the Q-values at witness belief states

b1 (depicted by circles). The second LP increases the Q-values of some plans (depicted by

crosses) by one hundred and differentiates the moves that lead to an optimal controller.

3.2.4 Tabu search

Tabu search is a general local search method that utilizes search history to guide the

search process and escape from local suboptima [Glo89, Glo90]. A common meta-strategy

is to maintain a list, called tabu list, of recent moves that represents the short-term

search memory. The moves on the list are not considered when selecting the next move.

The rationale is that in such a case, the tabu moves are given a chance to prove their

“usefulness”, since the effect of local optima attractors is minimized and some cycles are

avoided.

Chapter 3. Stochastic local search procedure 56

In our algorithm, the moves recommended by the heuristic function h(·) are good

only at certain belief regions, and often reduce the objective function value. If we later

attempt to improve the controller value, such moves can get undone without fulfilling

their long-term potential. Therefore, we add the moves to a tabu list with a hope that

meanwhile the controller changes so that belief regions in which the tabu moves have

high-value become reachable from the initial belief state. In the current implementation,

the tabu list is simply a queue of a fixed size, pre-determined by the size parameter tl.3

The elements of the list are simply the nodes of the finite policy graph; adding a new

node to the list removes the oldest one in the list.

Witness belief list

In addition to the tabu list, we keep another list that represents a different aspect of

short-term search history. Each move m that is chosen according to the heuristic value

h(m) also has an associated witness belief state bm at which its Q-value is highest, and a

belief region Bm in which it dominates other moves. While the witness belief state bm is

accessible with no extra computational cost as a by-product of the Q-value heuristic LP,

there is no easy way to represent the whole region Bm. It often happens that there are

many good moves in the same belief region; installing more than one of them at different

nodes might simply waste the controller capacity.

We therefore view the witness belief state bm as a representative of the whole region

Bm and add it to a separate witness belief tabu list. If another move is considered whose

witness belief state is “near” a tabu belief state, we assume that they share the same

belief region; therefore, such a move is not useful. Maintaining a witness belief tabu list

allows one to rule out subsequent moves that duplicate the effect of previous conditional

plans.

3More generally, the tabu list size could be dynamically determined by the history of past configura-
tions (one example is Reactive Search [Bat96]).

Chapter 3. Stochastic local search procedure 57

The “nearness”, or distance between two belief states can be defined in a variety of

ways. For our experiments, we used the belief discretization technique of Geffner and

Bonnet [GB98], but more suitable measures warrant further research. Given an integer

resolution parameter r > 0, the probabilities b(s) are discretized into r discrete levels.

Two belief states b and b′ are close if their discretized representation is the same, that is

round(b(s) · r)/r = round(b′(s) · r)/r, for all s ∈ S.

Witness belief states get associated with the nodes at which their respective condi-

tional plans are installed. Once a new move is executed at a node, its witness belief state

is removed.

3.3 Algorithm

We can now describe our stochastic local search in the space of finite state controllers.

At each iteration, or step, of our SLS algorithm, we perform two kinds of moves: one

or more “local” moves and a “global” move. In the local stage, we instantiate nodes

with conditional plans that are good at some belief state by choosing moves according

to the Q-value heuristic h(·). In the global stage, we select the move that increases the

overall value of the controller with respect to the initial belief state. At the end of each

iteration, we perform a gradient ascent on the resulting FSC, and record the maximum

value attained. Here is the outline of the SLS procedure (for the pseudocode version, see

Algorithms 3–5 below):

While search termination criteria are not met, do the following:

• Perform local moves:

– sample a conditional plan σ according to the Q-value heuristic h(σ) (plans

with higher h-values are given greater weight in the sampling distribution)

while ensuring that no node in the FSC already has a witness belief state bσ;

Chapter 3. Stochastic local search procedure 58

– choose a non-tabu node n which is either not reachable from the starting node

or which leads to the highest increase in the FSC value when instantiated with

the plan σ;

– perform the local move 〈n, σ〉, add the node n to the move tabu list and the

witness belief state bσ to the witness belief tabu list.

• Perform a global move:

– Sample a given number of conditional plans, consider installing them at non-

tabu nodes, and select the move according to the increase in the FSC value

with respect to the prior belief b0;

– make the selected move, add the node to the tabu-list and remove the witness

belief state ascribed to that node.

• Run gradient ascent starting from the current FSC and record the value achieved

(GA does not change the current FSC).

This procedure can be viewed as a particular case of iterated local search and tabu

search [Hoo98]. Iterated local search uses two types of SLS steps to avoid getting stuck

in local optima of the objective function: one for reaching local optima as efficiently as

possible, and the other for effectively escaping from local optima.

In our algorithm, local (and, to an extent, global) moves play the role of perturbation

procedure. They attempt to modify the current solution in a way which cannot be im-

mediately undone by the subsequent greedy optimization phase. This allows the process

to escape into a region of a different local attractor. Gradient ascent then provides the

most efficient way to reach the new local optimum.

We now describe the three stages of our algorithm in more detail.

Chapter 3. Stochastic local search procedure 59

3.3.1 Local moves

In the local stage (see Algorithm 4), we attempt to find moves that bring high rewards for

some belief states (even though such belief states might not be reachable in the current

controller). Given a set of conditional plans (either all possible, or a random sample),

we evaluate them using the Q-value heuristic described above. We then remove plans

whose witness belief states are near some state on the witness belief tabu list. Finally,

we sample one conditional plan from a probability distribution that gives greater weight

to plans with higher h-values. We use the soft-max, or Boltzmann function, to weigh the

plans in Σ:

Pr(σ) =
eh(σ) θ∑

σ′∈Σ e
h(σ′) θ , (3.17)

where θ is the temperature parameter. Since it is not of central importance, in our

experiments we choose this parameter for each problem by inspecting the heuristic func-

tion values; in the future, it would certainly be desirable to automate this aspect of the

algorithm.

Together with the heuristic h(σ), the linear program also returns the witness belief

state bσ at which this heuristic value is achievable. In general, there may be a lot of

conditional plans that are good for the same belief state; if they get installed at different

nodes, controller capacity gets wasted. To prevent that, we attach a witness belief state

for a conditional plan to a node at which it gets installed. The witness belief tabu list

beliefList thus holds paired nodes and belief states, or, in our case, their discretized

forms. The resolution parameter r, described in Section 3.2.4, was chosen by hand; for

our experiments, r ranged from 10 to 50.

There are two main heuristics for selecting a non-tabu node to which we apply the

conditional plan:

• We could just pick a move (i.e., the selected conditional plan + a node) that results

in the highest controller value among all non-tabu nodes; however,

Chapter 3. Stochastic local search procedure 60

• We also need to consider unreachable nodes, i.e. the nodes that have no incoming

transitions. Applying a conditional plan to such a node will not change the con-

troller value; therefore, unreachable nodes will not be considered in the global or

GA stage. However, such nodes represent unused capacity of the controller, and

instantiating them with good conditional plans is one way of eventually making

them useful.

To balance the two heuristics, we probabilistically choose one or another. In our exper-

iments, if there are any unreachable nodes, we choose such a node with probability 0.9,

and the node that leads to the highest increase in value — with probability 0.1.

3.3.2 Global moves

In this stage (see Algorithm 5), we would like to choose a move that increases the overall

controller value. One of the simplest ways is to sample a number of conditional plans,

apply them to nodes, and select the move according to the increase in controller value.

The selected node is added to the tabu list.

The global stage is essentially a form of stochastic hill-climbing. While the local stage

instantiates nodes with moves that are useful for some belief states, what we ultimately

care about is the value of the policy graph with respect to the prior belief. Therefore, in

the global stage we select moves that increase the controller value; in most cases, such

moves would link to the nodes instantiated with useful moves in the local stage. Thus,

the global stage verifies the usefulness of moves proposed in the local stage.

3.3.3 Gradient ascent

The previous stages propose good starting points for GA; they are designed to prevent

the GA from getting stuck in the same local suboptimum. At the end of each step,

we still run GA in order to reach a (new, ideally) local optimum in a computationally

Chapter 3. Stochastic local search procedure 61

efficient manner; with good starting points proposed by our algorithm, we can hope that

one of these local optima will happen to be global.

Chapter 3. Stochastic local search procedure 62

Algorithm 3 Policy search algorithm

Input:
global POMDP // encoding of POMDP
nNodes // number of free nodes in policy graph
nSamplesLocal // number of moves to consider in Local stage
nSamplesGlobal // number of moves to consider in Global stage
tl // the size of tabu list
nLocalMoves // number of moves to make in Local stage

Output: π∗ // the best policy graph found

1: global tabuList← initializeTabuList(tl)
2: global beliefList← initializeBeliefList(nNodes)
3: π ← randomGraph(nNodes)
4: v∗ ← −Inf

5: repeat
6: // Local stage
7: for i = 1..nLocalMoves do
8: chosenMove← getLocalMove(nSamplesLocal, π)
9: beliefList← addBelief(chosenMove.node, chosenMove.belief)

10: tabuList← addTabu(chosenMove.node)
11: π ← makeMove(chosenMove, π)
12: end for

13: // Global stage
14: chosenMove← getGlobalMove(nSamplesGlobal, π)
15: beliefList← removeBelief(chosenMove.node)
16: tabuList← addTabu(chosenMove.node)
17: π ← makeMove(chosenMove, π)

18: // Gradient ascent stage
19: v′, π′ ← gradientAscent(π)
20: if v′ ≥ v∗ then
21: v∗ ← v′

22: π∗ ← π′

23: end if

24: until search termination condition is met

Chapter 3. Stochastic local search procedure 63

Algorithm 4 Function getLocalMove

Input:
global POMDP // encoding of POMDP
global tabuList // list of tabu nodes
global beliefList // witness belief states associated with nodes
π // current policy graph
nSamplesLocal // number of moves to consider in Local stage

Output: chosenMove = 〈node, condP lan, belief〉

1: sampledCondP lans[]← sampleCondPlans(nSamplesLocal)
2: QvalueHeuristics[], witnessBeliefs[]←

getQvalueHeuristics(sampledCondP lans[])
// get Q-value heuristic and associated witness belief state
// for each sampled move by solving LP

3: sample conditional plan chosenCondP lan:
– according to Q-value heuristic; and,
– so that no node in graph has the same witness belief state

4: chosenBelief ← witness belief associated with chosenCondP lan

5: maxV ← −Inf
6: for iNode = 1..nNodes do // Choose node
7: if iNode is not in tabuList then
8: π′ ← makeMove(〈iNode, chosenCondP lan〉, π)
9: v′ ← value(π′)

10: if v′ ≥ maxV then
11: maxV ← v′

12: chosenNode← iNode
13: end if
14: end if
15: end for
16: if there are unconnected nodes then
17: if some random choice criterion is met then
18: chosenNode is one of unconnected nodes
19: end if
20: end if
21: chosenMove.node← chosenNode

chosenMove.condP lan← chosenCondP lan
chosenMove.belief ← chosenBelief

22: return chosenMove

Chapter 3. Stochastic local search procedure 64

Algorithm 5 Function getGlobalMove
Input:

global POMDP // encoding of POMDP
global tabuList // list of tabu nodes
π // current policy graph
nSamplesGlobal // number of moves to consider in Global stage

Output: chosenMove = 〈node, condP lan〉

1: sampledCondP lans[]← sampleCondPlans(nSamplesGlobal)
2: maxV ← −Inf
3: for i = 1..n do
4: for iNode = 1..nNodes do
5: if iNode is not in tabuList then
6: iCondP lan← sampledCondP lans[i]
7: π′ ← makeMove(〈iNode, iCondP lan〉, π)
8: v′ ← value(π′)
9: if v′ ≥ maxV then

10: maxV ← v′

11: chosenNode← iNode
12: chosenCondP lan← iCondP lan
13: end if
14: end if
15: end for
16: end for
17: chosenMove.node← chosenNode
18: chosenMove.condP lan← chosenCondP lan
19: return chosenMove

Chapter 4

Experiments

The following set of experiments illuminates various aspects of the SLS algorithm and

compares its performance to GA on several examples drawn from the research literature.

The algorithm parameters, such as the number of local moves per iteration, the number

of conditional plans sampled, and the size of the tabu list, have been tuned to specific

problems. Our SLS procedure was implemented in Matlab and run on Xeon 2.4GHz

computers; the linear programs were solved using ILOG CPLEX 7.1 LP optimizer.

We look at the following domains:

• Load/Unload is a commonly used toy POMDP from literature. Our results verify

that the SLS algorithm performs no worse than gradient ascent.

• Planning problem is used to demonstrate problems with gradient ascent and justify

the specifics of our algorithm.

• Heaven/Hell is a harder problem from POMDP literature. It is a challenging do-

main for our algorithm, and (with minor modifications) an insurmountable problem

for gradient ascent.

• Preference Elicitation is a promising domain of application for our algorithm.

We experiment both with discrete and continuous state spaces.

65

Chapter 4. Experiments 66

+10
unload load

Figure 4.1: Load/Unload problem

4.1 Load/Unload

Load/Unload is a simple problem that has been used to demonstrate the benefits of

gradient-based policy search [PMK99, MKKC99, Abe01].

Problem description

In the Load/Unload POMDP (see Figure 4.1), an agent moves between “Load” (L) and

“Unload” (U) locations and receives a reward of 10 every time it enters the “Unload”

location after having first visited the “Load” location. The environment is only partially

observable, because the agent cannot discriminate among the intermediate locations; the

observation space is thus O = {load, unload, null}. The agent can perform two actions:

A = {left, right}. Following the problem settings in [MKKC99, Abe01], we assume that

transition and observation probabilities are deterministic. The discount factor is 0.99,

and the agent starts in the “unload” location with no load.

Results

The Load/Unload problem is fairly straightforward and readily amenable to GA. It has

been used to test various policy-based POMDP algorithms because of two main reasons:

first, since the problem is quite easy, the results obtained are expected to reflect an upper

bound on the performance of algorithms on a variety of problem instances; second, no

matter how many intermediate locations are specified (i.e., regardless of the size of the

system state space S), the optimal policy can be expressed by a two-node policy graph,

depicted in Figure 4.2.

Chapter 4. Experiments 67

Left Right
unload

unload, nullload, null

load

Figure 4.2: Optimal policy graph for the Load/Unload problem

We tested our algorithm on this problem to ensure that it performs as well as GA on

relatively “easy” problems. With 2 nodes and 6 locations (10 states), GA with random

starting FSCs finds the optimal policy 46.4% of the time (in 1000 trials), a near-optimal

policy 44.3% of the time, and fails (converging on a poor policy) 9.3% of the time. The

optimal policy value is 9.5538; a near-optimal policy results if the first action is to move

left instead of going straight to the “load” location; its value is 9.4583. Poor policies

have values ranging from 0 to 6.0205.

Our SLS algorithm always finds the optimal controller, taking on average 4.11 iter-

ations (averaged over 1000 runs). Because the FSC size is so small, the computational

cost for SLS is not much greater than GA. GA takes on average 0.20 seconds; one SLS

iteration (with GA time included) — 0.40 seconds. Figure 4.3 shows how the complexity

of gradient ascent increases as a function of state space size (for each state space size,

the GA time is averaged over 20 runs with random initial FSCs); a similar diagram

was displayed in [MKKC99], although their absolute execution times seem to be much

slower.1

1For example, GA is reported to take about 1000 seconds for a 200-state POMDP.

Chapter 4. Experiments 68

0 100 200 300 400 500 600
0

5

10

15

20

25

30

35

40

45

50

Number of system states

E
xe

cu
tio

n
tim

e
(s

ec
)

GA execution time for Load/Unload problem

Figure 4.3: Convergence time of gradient ascent for a 2-node FSC as a function of state space

size S.

4.2 Planning

The next POMDP is designed to test the intuitions described in Section 3.1. The Plan-

ning problem requires a sequence of actions to be performed, causing severe difficulties

for GA.

Problem description

The state space is composed of four variables with the following domains: U = {u1, u2, u3},

V = {v, v̄}, G = {g, ḡ}, D = {d, d̄}. The actions k, l,m, n have conditional effects on

these variables. Action k causes U to take value u2 if executed when u1 holds (denoted

k : u1 → u2); similarly, k : u2 → d and k : u3 → d. The other actions have these

effects—l : u1 → g; l : u2 → u3; l : u3 → d; m : u1 → g; m : u2 → d; m : u3 → v;

n : u1 → g; n : u2 → d; and n : u3 → d. The initial state is 〈u1, v̄, ḡ, d̄〉, and states where

either V , G, or D is true are terminal. The reward function is additive: d has a cost of

-1000 (disaster), g is worth +10 (good), and v is worth +100 (very good). Action effects

Chapter 4. Experiments 69

[+10] [+100][-1000]

l, m, n

k

k,m, n

l

m
k, l, n

〈u1 v̄ḡd̄〉

〈u2 v̄ḡd̄〉

〈u3 v̄ḡd̄〉

〈u1 v̄gd̄〉 〈u3 vḡd̄〉〈− v̄ḡd〉

Figure 4.4: State transition diagram for Planning POMDP.

are deterministic. The diagram of the problem setting is shown in Figure 4.4.

Results

The optimal policy is to execute the sequence k, l,m, attaining a reward of 100. However,

in virtually all randomly initialized FSCs, increasing the probability of action k while

keeping everything else constant leads to a decrease in FSC value; therefore, GA methods

almost always converge to a suboptimal policy, choosing actions l,m, n at the outset and

receiving 10. Using a controller with 6 nodes, we ran GA 6000 times: the policy reached

achieves the suboptimal value of 10 in every trial. In 6000 trials, our SLS algorithm

found the optimal FSC each time, taking on average 3.14 iterations. On average, GA

takes 0.29 seconds; one SLS iteration, 3.08 seconds (with no conditional plan sampling).

Chapter 4. Experiments 70

S

+100 −100

S

−100 +100

Figure 4.5: Heaven/Hell problem with left and right worlds.

4.3 Heaven/Hell

The Heaven/Hell problem appeared (in various forms) in [AB02, Abe01, Thr99, GB98].

Problem description

The agent starts with equal chance in either “left” or “right” worlds (in the location

marked by “S” in Figure 4.5), and, because of partial observability, does not know which.

The (left or right) arrow (Figure 4.5) conveys information about the location of “Heaven”

(positive reward); if the agent does not observe the arrow, it risks falling into “Hell”

(negative reward). The arrow locations are fully observable, emitting observations left

or right. Heaven and Hell locations are absorbing – the process terminates once the agent

reaches one of them. The top and bottom cells in the center column are fully observable;

any other state is aliased by the default observation. The observation space thus consists

of five observations: left, right, top, bottom, default. The agent has four actions at its

disposal, and can move up, down, left, right; it stays in the same location if an action is

not appropriate (such as moving left in one of the starting states). In our experiments,

the state transitions were deterministic, and there was no observation noise. An optimal

FSC needs eight nodes.

Chapter 4. Experiments 71

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Steps

P
ro

ba
bi

lit
y

of
 (

cl
os

e
to

)
op

tim
al

 s
ol

ut
io

n

Run−length distributions

Hell −1000, Heaven +100
Hell −100, Heaven +100

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Steps

P
ro

ba
bi

lit
y

of
 (

cl
os

e
to

)
op

tim
al

 s
ol

ut
io

n

Run−length distributions

Hell −1000, Heaven +100
Hell −100, Heaven +100

Figure 4.6: Run-length distributions for the two variants of Heaven/Hell (100 trials). On the

right, RLDs are plotted on a logarithmic scale.

Results

In [AB02, GB98], both Heaven and Hell have symmetric rewards (e.g., +100 and -100).

Since the average reward of going up and blindly choosing either Heaven or Hell is zero,

and information cost is also zero, GA methods have a chance of finding a reasonably

good policy (since with regard to the initial belief state, going down is no worse than

going up). Our experiments with 12-node controllers show that when Heaven and Hell

locations have symmetric rewards, GA achieves approximately half of the optimal value

(but never attains the optimal). However, it is not hard to make this problem practically

unsolvable by GA. If we increase the Hell penalty to -1000, GA will almost always choose

the safe alternative of bumping into walls and receiving zero reward, even though the

optimal FSC has not changed. Our SLS procedure, on the other hand, does find the

optimal solution in both versions of the problem.

To get a sense of how FSC quality improves over time, we plot run-length distributions

(RLDs) for our method, showing the empirical probability of finding a near (within 10%)

optimal FSC as a function of SLS iterations (see Figure 4.6). As we see, after a reasonable

Chapter 4. Experiments 72

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (CPU min)

P
ro

ba
bi

lit
y

of
 o

pt
im

al
 s

ol
ut

io
n

Run−time distributions

Hell −1000, Heaven +100
Hell −100, Heaven +100

Figure 4.7: Run-time distributions for the two variants of Heaven/Hell (100 trials). Asymmet-

ric rewards make the problem considerably harder to solve.

number of steps, the probability of finding the correct FSC is quite high. The asymmetric

problem is, not surprisingly, somewhat harder to solve. Rough computation time (for

-1000 penalty case) per iteration is 164 seconds (GA time included); GA time is on

average 53 seconds. The run-time distribution (RTD) is shown in Figure 4.7.

For the Heaven/Hell problem, we adopted the technique of [AB02] in order to speed

up our algorithm: instead of allowing transitions to any node for each observation, we

restrict the number of outgoing links to 3, including a mandatory self-transition. The

structure of the FSC (i.e., the allowed connections between nodes) is chosen randomly at

the beginning of each trial. This trick reduces the space of conditional plans considered,

which currently is the main complexity bottleneck for our algorithm.

4.4 Preference elicitation

A final problem we consider is the preference elicitation (PE) problem described in

[Bou02]. The objective is to optimally balance the cost of queries and the gain pro-

vided by the elicited information with respect to the quality of the final decision.

Chapter 4. Experiments 73

Problem description

Preference elicitation is a process of determining user utility functions to the extent

necessary to make a decision on their behalf. The main idea is that an optimal decision

can usually be made without the full knowledge of preferences. The interaction process

can be viewed as a sequence of questions and answers; at any time, there is a trade-off

between the quality of the decision an agent makes and the amount of information it

must obtain from a user about the relevant preferences. A question is only worth asking

if its expected value with regard to the decision quality outweighs the cost.

Boutilier [Bou02] introduces the concept of preference elicitation as a POMDP that

takes into account the value of future questions when determining the value of the current

question. We can assume a system that makes decisions on behalf of a user; such a

system has a fixed set of choices (actions, recommendations) whose effects are generally

known precisely or can be modeled stochastically. The main idea of this formulation is

to probabilistically quantify the system’s uncertainty about a user’s true utility function

by maintaining a probability distribution over possible functions; the distribution gets

updated after each interactive step. The system interacts with a user in a sequential

way; at each step it either asks a question, or determines that it has enough information

about a user’s utility function to make a decision. As each query has associated costs,

the model allows the system to construct an optimal interaction policy which takes into

account the trade-off between interaction costs and the value of provided information.

In particular, the state space of the preference elicitation POMDP is the set of pos-

sible utility functions; actions can be either queries about a user’s utility function or

terminal decisions; observation space is the set of possible responses to queries. The

dynamics of the system is simplified by the fact that the state transition function is

trivial: the underlying utility functions never change throughout the interaction process;

the observation function maintains a probability distribution of a particular response to

a given query for a specific utility function; and, the reward function simply assigns costs

Chapter 4. Experiments 74

q3q3

d5 d7d1 d2 d4d3 d6

q4 q5

q6

Figure 4.8: Optimal controller for the discrete preference elicitation problem. Solid lines

represent yes observation links; dashed lines — no observation links.

to queries and expected utilities to decisions.

Solving the preference elicitation POMDP is a difficult task. In realistic situations, the

state space is continuous and multi-dimensional, so standard methods for solving finite-

state POMDPs are no longer applicable. Boutilier [Bou02] presents a value-iteration

based method that exploits the special structure inherent in the preference elicitation

process to deal with parameterized belief states over the continuous state space; belief

states are represented by Gaussian mixture models. We attempted to solve this problem

using our SLS algorithm.

Results

We tackle two variants of the problem described in [Bou02]. In the first, we discretize

the utility space to six states and the number of actions to 14. In the second, we sample

from a continuous state space, but discretize the action space to 70 actions. The decision

Chapter 4. Experiments 75

scenario is the same for both variants. There are seven outcomes {s1, . . . , s7}, and seven

decisions {d1, . . . , d7}. The decisions di, i ≤ 5, each have a 50% chance of causing

outcomes si and si+1, while d6 causes either s6 or s1. Decision d7 is guaranteed to realize

outcome s7.

In the discrete setting, the 6 utility functions are quantified as follows:

s1 s2 s3 s4 s5 s6 s7

u1 0.9 0.9 0.1 0.1 0.1 0.1 0.3

u2 0.1 0.9 0.9 0.1 0.1 0.1 0.3

u3 0.1 0.1 0.9 0.9 0.1 0.1 0.3

u4 0.1 0.1 0.1 0.9 0.9 0.1 0.3

u5 0.1 0.1 0.1 0.1 0.9 0.9 0.3

u6 0.9 0.1 0.1 0.1 0.1 0.9 0.3

This table shows the utility values ui(sj) assigned to outcome sj by utility function ui.

In our POMDP, the discount factor is 0.99, query cost is 0.02, and observation space

is {yes, no}. When observation probabilities are noiseless, the optimal FSC has 11 nodes

(see Figure 4.8). Since this makes it easy to calculate the optimal value, the experiments

reported in Figures 4.9 and 4.10 assume noiseless observations. With noise probabilities

of 0.03, the optimal controller has at least 15 nodes.

In order to achieve good results, an optimal policy has to execute a precise sequence

of queries, and then make an appropriate decision. Since decisions are always terminal,

for preference elicitation problems, we assign each decision to a single FSC node. In

Figure 4.8, the seven bottom nodes are decision nodes. For queries, we use the following

notation: qi denotes the query “Is the utility of outcome i less than 0.9?”. By following

the optimal policy, we can achieve a value of 0.8233. Gradient ascent converges to local

suboptima with values no higher than 0.6552. This is illustrated in Figure 4.9, where

we plot the best value attained (averaged over 100 trials) at any time by 17 and 22-

Chapter 4. Experiments 76

0 10 20 30 40 50 60
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Time (CPU min)

B
es

t v
al

ue
 a

tta
in

ed

Value vs. time

SLS 17 nodes
SLS 22 nodes
Random GA 17 nodes
Optimal value

Figure 4.9: Anytime performance of discrete preference elicitation SLS (100 trials).

node controllers using our SLS algorithm vs. pure gradient ascent on random starting

configurations. In terms of CPU time the performance of the 17 and 22-node controllers

is similar. GA never finds an optimal FSC.

Figure 4.10 shows a plot of run-length distributions and run-time distributions for 17

and 22-node controllers. We can see that 22-node controllers achieve the optimal value

in fewer iterations than 17-node controllers.2 On the other hand, in terms of running

time, 17-node controllers perform better because they take less time per step.

We also briefly experimented with sampling from continuous utility spaces. In this

case, the utility priors are given by the mixture of uniforms with the following six com-

ponents (each weighted equally) [Bou02]:

2Parameter values for 10 node controller: nSamplesLocal = 100, nSamplesGlobal = 200,
nLocalMoves = 3, tl = 5; 15-node controller: nSamplesLocal = 300, nSamplesGlobal = 200,
nLocalMoves = 3, tl = 10.

Chapter 4. Experiments 77

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Steps

P
ro

ba
bi

lit
y

of
 o

pt
im

al
 s

ol
ut

io
n

Run−length distributions

17 nodes
22 nodes

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (CPU min)

P
ro

ba
bi

lit
y

of
 o

pt
im

al
 s

ol
ut

io
n

Run−time distributions

17 nodes
22 nodes

Figure 4.10: Run-length (left) and run-time (right) distributions for discrete preference elici-

tation POMDP (100 trials).

s1 s2 s3 s4 s5 s6 s7

b1 [.9 1] [.9 1] [0 .1] [0 .1] [0 .1] [0 .1] [.7 .8]

b2 [0 .1] [.9 1] [.9 1] [0 .1] [0 .1] [0 .1] [.7 .8]

b3 [0 .1] [0 .1] [.9 1] [.9 1] [0 .1] [0 .1] [.7 .8]

b4 [0 .1] [0 .1] [0 .1] [.9 1] [.9 1] [0 .1] [.7 .8]

b5 [0 .1] [0 .1] [0 .1] [0 .1] [.9 1] [.9 1] [.7 .8]

b6 [.9 1] [0 .1] [0 .1] [0 .1] [0 .1] [.9 1] [.7 .8]

For each belief component bi and outcome sj, the table shows the range for which bi

assigns positive uniform density to u(sj). This prior reflects the fact that the user prefers

some pair of adjacent outcomes; however, the pair is unknown to the agent. Outcome s7

is considered to be a safe alternative.

To solve this continuous space POMDP, we use our SLS algorithm, but sample 20

states (utility functions) at each iteration. Then, we calculate the observation function

and the reward function for the sampled states. The action space remains discrete, but

increased to 70 actions — we now allow nine different queries about the utility of each

Chapter 4. Experiments 78

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Steps

P
ro

ba
bi

lit
y

of
 9

9%
 o

pt
im

al
 s

ol
ut

io
n

Run−length distribution

0 100 200 300 400 500 600
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Time (CPU min)

B
es

t v
al

ue
 a

tta
in

ed

Value vs. time

SLS continuous state 22 nodes
Optimal value

Figure 4.11: Run-length distribution (left) and the best average value attained vs. execution

time (right) for continuous preference elicitation problem (22-node controllers, 21 trials). One

SLS step takes roughly 140 seconds.

outcome3 (7 × 9 = 63), and still have 7 terminal decisions. Although our work with

continuous preference elicitation problems is at very early stages, the results are quite

promising — our SLS procedure does find optimal or near-optimal controllers (see Figure

4.11).

3Queries are now of the type “Is utility of outcome sj less than k”, where k is any fraction in the set
{0.1, 0.2, . . . , 0.9}.

Chapter 5

Conclusions

This thesis provides two main contributions to POMDP research. First, we clearly iden-

tified and illustrated the importance of a basic problem with gradient-based FSC search

methods — their convergence to local suboptima. Most examples in the previous litera-

ture happened to have structure favorable to GA approaches; we showed that whenever

the precise sequence of actions is required, GA can lead to arbitrarily poor policies.

The problem is inherent in settings where the trade-off between the potential value of

information and its cost has to be carefully considered (e.g., in sequential preference

elicitation).

Our second contribution is a procedure for stochastic local search in the space of

POMDP controllers that combines a computationally attractive GA technique with

heuristics that help guide the search toward good (even optimal) FSCs. While more

intensive than GA, experiments demonstrate its effectiveness in interesting classes of

POMDPs. Our SLS procedure should be useful where exact POMDP solutions are in-

tractable, and GA methods, while more effective, lead to very poor policies. For such

POMDPs our method provides an any-time algorithm that seems to perform much better

than GA.

The main drawback of the current algorithm is the evaluation of conditional plans

79

Chapter 5. Conclusions 80

whose number is exponential in the number of observations. Our future research will

concentrate on finding appropriate heuristics for sampling from the space of conditional

plans, allowing much larger FSCs to be dealt with. Ideally, we can find a way to generate

useful plans incrementally, like in the Witness POMDP algorithm [KLC98].

We are also planning to pursue the application of our search framework to prefer-

ence elicitation problems, where continuous state, action, and observation spaces present

challenges to value-based POMDP solution methods.

Bibliography

[AB02] Douglas Aberdeen and Jonathan Baxter. Scalable internal-state policy-

gradient methods for POMDPs. In Proceedings of the Nineteenth Interna-

tional Conference on Machine Learning, pages 3–10, 2002.

[Abe01] Douglas Aberdeen. Internal-state policy-gradient algorithms for infinite-

horizon POMDPs. Technical report, Research School of Information Science

and Engineering, Australian National University, Canberra, Australia, July

2001.

[Ast65] K. J. Aström. Optimal control of Markov decision processes with incomplete

state estimation. J. Math. Anal. Appl., 10:174–205, 1965.

[Bat96] Roberto Battiti. Reactive search: Toward self-tuning heuristics. In V. J.

Rayward-Smith, I. H. Osman, C. R. Reeves, and G. D. Smith, editors, Mod-

ern Heuristic Search Methods, chapter 4, pages 61–83. John Wiley and Sons

Ltd, 1996.

[Bel57] Richard E. Bellman. Dynamic Programming. Princeton University Press,

Princeton, 1957.

[BM99] Leemon Baird and Andrew Moore. Gradient descent for general reinforce-

ment learning. Advances in Neural Information Processing Systems 11, 1999.

81

Bibliography 82

[Bou02] Craig Boutilier. A POMDP formulation of preference elicitation problems. In

Proceedings of the Eighteenth National Conference on Artificial Intelligence,

pages 239–246, Edmonton, 2002.

[Che88] Hsien-Te Cheng. Algorithms for Partially Observable Markov Decision Pro-

cesses. PhD thesis, University of British Columbia, Vancouver, 1988.

[CKL94] Anthony R. Cassandra, Leslie Pack Kaelbling, and Michael L. Littman. Act-

ing optimally in partially observable stochastic domains. In Proceedings of

the Twelfth National Conference on Artificial Intelligence, pages 1023–1028,

Seattle, 1994.

[CLZ97] Anthony R. Cassandra, Michael L. Littman, and Nevin L. Zhang. Incremen-

tal pruning: A simple, fast, exact method for POMDPs. In Proceedings of the

Thirteenth Conference on Uncertainty in Artificial Intelligence, pages 54–61,

Providence, RI, 1997.

[GB98] Hector Geffner and Blai Bonet. Solving large POMDPs by real time dynamic

programming. In Working Notes, Fall AAAI Symposium on POMDPs, 1998.

[Glo89] F. Glover. Tabu Search – Part I. ORSA Journal on Computing, 1(3):190–206,

1989.

[Glo90] F. Glover. Tabu Search – Part II. ORSA Journal on Computing, 2(1):4–32,

1990.

[Han97] Eric A. Hansen. An improved policy iteration algorithm for partially observ-

able MDPs. In Proceedings of Conference on Neural Information Processing

Systems, pages 1015–1021, Denver, CO, 1997.

Bibliography 83

[Han98a] Eric A. Hansen. Solving POMDPs by searching in policy space. In Proceed-

ings of the Fourteenth Conference on Uncertainty in Artificial Intelligence,

pages 211–219, Madison, WI, 1998.

[Han98b] Eric J. Hansen. Finite-memory control of partially observable systems. PhD

thesis, University of Massachusetts Amherst, Amherst, 1998.

[Hoo98] Holger H. Hoos. Stochastic Local Search—Methods, Models, Applications.

PhD thesis, TU Darmstadt, Darmstadt, Germany, 1998.

[How60] Ronald A. Howard. Dynamic Programming and Markov Processes. MIT

Press, Cambridge, 1960.

[JSJ95] Tommi Jaakkola, Satinder P. Singh, and Michael I. Jordan. Reinforcement

learning algorithm for partially observable Markov decision problems. In

G. Tesauro, D. Touretzky, and T. Leen, editors, Advances in Neural Infor-

mation Processing Systems, volume 7, pages 345–352. The MIT Press, 1995.

[KLC98] Leslie Pack Kaelbling, Michael Littman, and Anthony R. Cassandra. Plan-

ning and acting in partially observable stochastic domains. Artificial Intelli-

gence, 101:99–134, 1998.

[Lit94] Michael L. Littman. Memoryless policies: Theoretical limitations and prac-

tical results. In Dave Cliff, Philip Husbands, Jean-Arcady Meyer, and Stew-

art W. Wilson, editors, Proceedings of the Third International Conference on

Simulation of Adaptive Behavior, Cambridge, MA, 1994. The MIT Press.

[Mat02] The MathWorks. MATLAB Optimization Toolbox 2.2.

http://www.mathworks.com/products/optimization, 2002.

Bibliography 84

[McC95] R. Andrew McCallum. Instance-based utile distinctions for reinforcement

learning with hidden state. In Proceedings of the Twelfth International Con-

ference on Machine Learning, pages 387–395, Lake Tahoe, Nevada, 1995.

[MHC99] Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of

probabilistic planning and infinite-horizon partially observable decision prob-

lems. In Proceedings of the Sixteenth National Conference on Artificial In-

telligence, pages 541–548, Orlando, 1999.

[MKKC99] Nicolas Meuleau, Kee-Eung Kim, Leslie Pack Kaelbling, and Anthony R.

Cassandra. Solving POMDPs by searching the space of finite policies. In

Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelli-

gence, pages 417–426, Stockholm, 1999.

[Mon82] George E. Monahan. A survey of partially observable Markov decision pro-

cesses: Theory, models and algorithms. Management Science, 28:1–16, 1982.

[MPKK99] Nicolas Meuleau, Leonid Peshkin, Kee-Eung Kim, and Leslie Pack Kaelbling.

Learning finite-state controllers for partially observable environments. In Pro-

ceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence,

pages 427–436, Stockholm, 1999.

[PMK99] Leonid Peshkin, Nicolas Meuleau, and Leslie P. Kaelbling. Learning policies

with external memory. In Proceedings of the Sixteenth International Confer-

ence on Machine Learning, pages 307–314, San Francisco, CA, 1999.

[PT87] Christos H. Papadimitriou and John N. Tsitsiklis. The complexity of Markov

decision processes. Mathematics of Operations Research, 12(3):441–450, 1987.

[Put94] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dy-

namic Programming. Wiley, New York, 1994.

Bibliography 85

[Son71] Edward J. Sondik. The optimal control of partially observable Markov Deci-

sion Processes. PhD thesis, Stanford university, Palo Alto, 1971.

[Son78] Edward J. Sondik. The optimal control of partially observable Markov pro-

cesses over the infinite horizon: Discounted costs. Operations Research,

26:282–304, 1978.

[SS73] Richard D. Smallwood and Edward J. Sondik. The optimal control of par-

tially observable Markov processes over a finite horizon. Operations Research,

21:1071–1088, 1973.

[Thr99] Sebastian Thrun. Monte Carlo POMDPs. In Proceedings of Conference on

Neural Information Processing Systems, pages 1064–1070, Denver, 1999.

[WH80] C. C. White and D. Harrington. Application of Jensen’s inequality for adap-

tive suboptimal design. Journal of Optimization Theory and Applications,

32(1):89–99, 1980.

[Whi91] Chelsea C. White. A survey of solution techniques for the partially observed

Markov decision process. Annals of Operations Research, 32:215–230, 1991.

[WS97] Marco Wiering and Juergen Schmidhuber. HQ-learning. Adaptive Behavior,

6(2):219–246, 1997.

[ZL96] Nevin L. Zhang and Wenju Liu. Planning in stochastic domains: Problem

characteristics and approximation. Technical Report HKUST-CS96-31, Hong

Kong University of Science and Technology, 1996.

