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Abstract
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2012

In this thesis, we present a decision-theoretic framework for building decision support sys-

tems that incrementally elicit preferences of individual users over multiattribute outcomes and

then provide recommendations based on the acquired preference information. By combin-

ing decision-theoretically sound modeling with effective computational techniques and cer-

tain user-centric considerations, we demonstrate the feasibility and potential of practical au-

tonomous preference elicitation and recommendation systems.

More concretely, we focus on decision scenarios in which a user can obtain any outcome

from a finite set of available outcomes. The outcome is space is multiattribute; each out-

come can be viewed as an instantiation of a set of attributes with finite domains. The user has

preferences over outcomes that can be represented by a utility function. We assume that user

preferences are generalized additively independent (GAI), and, therefore, can be represented

by a GAI utility function. GAI utilities provide a flexible representation framework for struc-

tured preferences over multiattribute outcomes; they are less restrictive and, therefore, more

widely applicable than additive utilities. In many decision scenarios with large and complex

decision spaces (such as making travel plans or choosing an apartment to rent from thousands

of available options), selecting the optimal decision can require a lot of time and effort on the

part of the user. Since obtaining the user’s complete utility function is generally infeasible, the

decision support system has to support recommendation with partial preference information.
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We provide solutions for effective elicitation of GAI utilities in situations where a probabilistic

prior about the user’s utility function is available, and in situations where the system’s uncer-

tainty about user utilities is represented by maintaining a set of feasible user utilities. In the first

case, we use Bayesian criteria for decision making and query selection. In the second case, rec-

ommendations (and query strategies) are based on the robust minimax regret criterion which

recommends the outcome with the smallest maximum regret (with respect to all adversarial

instantiations of feasible utility functions).

Our proposed framework is implemented in the UTPREF recommendation system that

searches multiattribute product databases using the minimax regret criterion. UTPREF is tested

with a study involving 40 users interacting with the system. The study measures the effec-

tiveness of regret-based elicitation, evaluates user comprehension and acceptance of minimax

regret, and assesses the relative difficulty of different query types.
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Chapter 1

Introduction

One of the main goals of artificial intelligence (AI) research is to devise intelligent systems that

help people or companies by recommending or making decisions on their behalf. Application

domains for such systems are too many to enumerate, ranging from traditional fields of finance,

medicine and logistics to consumer services, such as product recommendation or customiza-

tion, advertising, and travel planning. The critical requirement for successful implementation

of intelligent decision support systems is the knowledge of individual user wants and needs,

or preferences; once the preferences are known, the system can compute the most preferred

course of action based on the available information about the problem domain.

Decision theory provides a formal framework for making optimal decisions by combining

probability theory (which describes how actions map to outcomes) with utility theory (which

deals with quantitative representation of user preferences). To calculate an optimal decision,

both the problem dynamics and user preferences (or utilities) over outcomes need to be fully

specified. The dynamics of a decision problem are often known and, furthermore, are the same

across a variety of users. The opposite is usually the case for user preferences: they vary

considerably from user to user, and are rarely fully known. For example, in a travel planning

scenario, the distribution over outcomes associated with choosing a specific flight from Toronto

to New York (e.g., the odds of a delay greater than one hour, arriving during rush hour, losing

1



CHAPTER 1. INTRODUCTION 2

luggage) is the same for any user, but each user’s strength of preference for such outcomes can

be very different.

While information about the problem dynamics can be inferred from data or specified by

domain experts, an intelligent decision support system must be able to extract the preference

information from each user individually in order to tailor its actions or recommendations to the

specific needs different users. Since obtaining preferences is difficult, this presents a serious

problem for the deployment of intelligent systems that make decisions for users with distinct

utilities. Effective approaches to automated preference elicitation are therefore needed to break

the “preference bottleneck”, one of the most important problems facing AI.

1.1 Problems and solutions

Successful automated preference elicitation systems must address many difficult challenges.

In this section, we identify the key problems, describe previous attempts at solving them, and

propose our solutions.

1.1.1 Large outcome spaces

In many realistic domains where the outcome space is large, it is unreasonable to expect a

user to provide preference information about every outcome. In multiattribute settings (where

outcomes are defined by the possible values of attributes) with more than, say, ten attributes,

complete preference elicitation becomes virtually impossible, as the number of alternatives

grows exponentially in the number of attributes. For example, in a travel planning domain,

preferences over the flight selection alone can depend on more than ten attributes, such as trip

cost, departure time, return time, airline, number of connections, flight length, baggage weight

limit, flight class, the possibility of lost luggage, flight delays, and others. As a different

example, which we will also be using throughout this thesis, consider the scenario of searching

for a rental accommodation in Toronto. Some of the attributes that strongly influence people’s
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preferences include the rental price, area, building type, number of bedrooms, proximity to the

public transportation, parking availability, and a variety of rental unit features, such as presence

or absence of central air-conditioning, balcony, dishwasher, etc. Assessing preferences for all

outcomes in either scenario is infeasible due to the size of the outcome space.

User preferences, however, often exhibit internal structure that reflects preferential inde-

pendencies between domain attributes. Factored utility models help overcome the difficulty of

preference representation by decomposing user preferences into smaller and more manageable

components. The goal of multiattribute utility theory (MAUT) (Keeney and Raiffa, 1976) is

to investigate numerical representations that reflect structure in user preferences over multiat-

tribute spaces. In MAUT, the outcomes are described by a set of N attributes X1, X2, . . . , XN ,

each having a finite domain (a set of possible levels, or values). The set of all outcomes (in-

stantiations) X = X1 × · · · ×XN is the Cartesian product of attribute levels. The preferences

of a user, on whose behalf decisions are made, are captured by a utility function u : X 7→ R. A

quantitative utility function can be viewed as a representation of (qualitative) preferences over

lotteries (distributions over outcomes), with one lottery preferred to another if and only if its

expected utility is greater (von Neumann and Morgenstern, 1947). MAUT describes how, in the

presence of certain independence assumptions, user preferences can be represented compactly

by an additive, multilinear, or generalized additive utility functions.

Additive independence (Fishburn, 1965; Keeney and Raiffa, 1976) is commonly assumed

in practice; the utility u of a multiattribute outcome x = (x1, x2, . . . , xN) can then be written

as a sum of single-attribute subutility functions ui:

u(x) =
N∑
i=1

ui(xi).

In our rental domain, utility of an apartment y = (downtown, house, 2, . . .) would be decom-

posed as:

u(y) = uarea(downtown) + utype(house) + ubedrooms(2) + . . . ,

where uarea is the subutility function for the area attribute, and downtown denotes its (discrete)
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value.

Additive utility models are by far the most widely used due to their simplicity. However,

because of the strong preferential independence assumptions, their applicability in many cases

might not be justified. An additive decomposition is possible only if user preferences over

each attribute are independent of the values of other attributes (a formal definition of additive

independence will be provided in the following chapter). In the flight selection scenario, this

would imply that the strength of preference over flight length is not influenced by which flight

class (business or economy) the user is flying, or the quality of an airline, which is not a realistic

approximation. In a rental example, it is quite possible that the preference over the building

type does depend on the area; for example, one might prefer an apartment to a house if it is

downtown, and a house to an apartment otherwise.

Despite the limitations of additive models, representation and elicitation of more flexible

utility models is a relatively unexplored research area.1 In this thesis, we adopt the general-

ized additive independence (GAI) model (Fishburn, 1967b; Bacchus and Grove, 1995), which

decomposes a utility function into subutilities over (overlapping) sets of attributes, or factors,

rather than single attributes.

Let’s consider the simplest non-trivial GAI model with three attributes X1, X2 and X3 and

two factors F1 = {X1, X2}, and F2 = {X2, X3}. In a housing rental scenario, X1 could be the

area, X2 the building type, and X3 the number of bedrooms. If, quite realistically, the strength

of user preferences over the area (e.g., downtown or not) and number of bedrooms depends on

the building type (house or apartment?), then a GAI function with two factors is much more

expressive then a simple additive model:

uGAI(x) = u1(x1, x2) + u2(x2, x3).

One can intuitively think of GAI factors as a grouping of preferentially dependent attributes

1Apart from our work (Braziunas and Boutilier, 2005, 2007), some recent exceptions are (Chajewska, Koller,
and Parr, 2000; Boutilier, Bacchus, and Brafman, 2001; Gonzales and Perny, 2004; Boutilier, Patrascu, Poupart,
and Schuurmans, 2006; Engel and Wellman, 2007).
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(area and building type in one factor, and building type and number of bedrooms in the other).

The GAI representation is completely general—it can represent any utility function—yet in

practice is quite intuitive and natural, and typically yields a compact decomposition of prefer-

ences. It can model “flat” utility functions with no internal structure as well as additive utilities.

Most realistic problems arguably fall somewhere between these two extremes. Due to the gen-

erality of the GAI framework, all the results in this thesis are equally applicable to simpler

additive functions as well.

1.1.2 GAI utility elicitation

In automated decision support systems, utility models need to facilitate not only represen-

tation, but also elicitation of user preferences. In addition to ease of representation, simple

additive models are attractive because elicitation of additive utility function parameters can be

performed by using (almost exclusively) local queries. Such queries ask a user for the strength

of preference over each attribute in isolation; the values of other attributes are, because of

independence, irrelevant. Global queries, on the other hand, require consideration of a joint

instantiation of all attributes, which is cognitively much more difficult for a user if more than

a few attributes are involved.

Any additive utility function can be written in a form where an attribute subutility ui is

a product of local value functions (LVFs) vi (normalized to the [0,1] interval) and scaling

constants λi (all positive, and summing up to 1) (Fishburn, 1965; Keeney and Raiffa, 1976):

u(x) =
N∑
i=1

ui(xi) =
N∑
i=1

λivi(xi).

This simple factorization separates the representation of preferences into two components:

“local” and “global.” Since we can define LVFs independently of other attributes, we can also

assess them independently using local queries involving only the attribute in question. This

focus on preferences over individual attributes has tremendous practical significance, because

people have difficulty taking into account more than five or six attributes at a time (Green and
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Srinivasan, 1978). In our apartment rental example with three attributes, if the user’s utility

for apartments is given by an additive decomposition, the user only has specify local value

functions varea, vtype, and vbedrooms, and scaling constants λarea, λtype and λbedrooms reflecting

the relative utility ranges of each attribute. To assess a single local value function, such as varea,

the system need only ask queries involving values of the area attribute, without requiring any

consideration of the values of other attributes.

Assessing the scaling constants λi cannot be accomplished, of course, without calibration

of the LVFs vi across attributes. This calibration requires the user to compare or evaluate a

small number of full outcomes. Fortunately, the number of such outcomes is linear in the

number of attributes; the outcomes involved have a very special structure — they each differ

from a specific fixed reference outcome (typically the worst instantiation of all attributes) by

only one feature. The possibility of local assessment makes additive utility the model of choice

in most practical applications.

The GAI model is a natural and compact generalization of the much more widely used addi-

tive model. While representation of preferences is straightforward, elicitation with GAI models

is generally more complicated. Unlike additive models, GAI models require much more care

in calibration because of the possible overlap of factors (sharing of attributes). Intuitively,

since utility can “flow” from one subutility factor to the next through the shared attributes, the

subutility values do not have an independent semantic meaning; unlike in additive models, the

values of subutility functions ui do not directly represent the local preference relation among

the attributes in factor i. In addition, there are infinitely many valid decompositions of the

same utility function in which the subutility functions vary considerably. Therefore, a canon-

ical parameterized representation of the GAI utilities is needed for incremental elicitation of

GAI subutilities.

The elicitation issues just described have been largely overlooked in most previous work

on GAI utility functions (Boutilier et al., 2001; Boutilier, Patrascu, Poupart, and Schuurmans,

2003b, 2005). One exception is the work by Gonzales and Perny (2004), in which the problem
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of local elicitation and global calibration is skirted by using global queries with full (rather

than local) outcomes. However, by resorting to full outcome queries, we lose one of the most

critical advantages of additive models and fail to exploit the decomposition of utility functions

during the elicitation process.

We tackle the elicitation issues in GAI models by providing a canonical representation

that preserves the local structure of additive models (Braziunas and Boutilier, 2005). A key

observation is that by taking into account the conditioning sets of attributes that shield the

influence of other attribute values on local preferences over factor instantiations (analogously

to a Markov blanket in a probabilistic graphical model), we can define semantically sound

local value functions for GAI models as well. As in additive models, the LVFs calibrate local

preferences relative to the best and worst factor suboutcomes, assuming fixed values of the

attributes in the conditioning set. Most importantly, LVFs can be assesed in a local manner by

using queries that involve only attributes in single factors and their (usually small) conditioning

sets.

Using our representation, GAI models can be elicited by using both local queries about

preferences over small subsets of attributes and global queries for calibration across utility

factors. We can now exploit the generality, compactness and much wider applicability of GAI

models without losing the advantage (offered by more restrictive additive models) of elicitation

based on local queries.

1.1.3 Sequential elicitation

Preference information can be obtained in many different ways. “Passive” elicitation methods

observe user behaviour (by, for example, examining product buying patterns or search engine

query logs) and infer preference models that explain the observed behaviour (Samuelson, 1938,

1948; Louviere, Hensher, and Swait, 2000). “Active” elicitation methods create or refine pref-

erence models based on user responses to direct preference queries. In this thesis, we focus on

active elicitation. In a sense, we are interested in automating the role of classical decision ana-
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lyst whose goal is to assess the user’s (or decision maker’s) utility function through a carefully

guided dialogue, and eventually suggest an optimal course of action (Keeney and Raiffa, 1976;

French, 1986; French and Insua, 2000).

Active elicitation is by its nature a sequential process consisting of a series of questions and

answers. Therefore, an automated decision support system must have a policy for query selec-

tion (what query to ask next, possibly based on the complete history of previous responses),

predefined termination conditions (when to stop the elicitation process), and criteria for mak-

ing or recommending terminal decisions based on the acquired information. At the core of

such an elicitation process is the tradeoff between obtaining more utility information and thus

making a better decision, and the cost of further elicitation effort. Elicitation costs can be

cognitive (hours of human effort in answering questionnaires), computational (calculating a

value of certain alternative might involve solving complicated optimization problems or run-

ning simulations), financial (hiring a team of experts to analyze potential business strategies),

and others.

A proper accounting for cost vs. decision quality tradeoffs requires an explicit represen-

tation of utility function uncertainty. Often elicitation costs will outweigh the value of the

information obtained by further elicitation, and decisions might have to be made with partial

utility information. As an example of the tradeoff between decision quality and further elic-

itation effort, consider the travel planning situation in which, after a number of queries and

responses, a decision support system has reduced the set of potentially optimal flights to Flight

A, whose utility, after accounting for the ticket price, is between $800 and $1000, and Flight

B, whose utility is between $980 and $1300. Even though it is possible that Flight A is the

optimal choice, the maximum possible utility loss, or regret, of choosing flight B is only $20.

If the cost of further elicitation is greater than $20, the system can recommend Flight B without

assessing the full utility function.

In this thesis, we consider two ways of representing uncertainty over utility models. The

first, Bayesian, approach is to model uncertainty via probability distributions over utility func-



CHAPTER 1. INTRODUCTION 9

tion parameters; an optimal decision is the one that achieves the highest expected utility (where

expectation is taken over possible utility parameters). The second approach is to maintain a set

of feasible utility functions defined by constraints on model parameters. In both cases, we

formulate a framework for both making decisions under utility function uncertainty, and elici-

tation strategies that quickly reduce relevant uncertainty.

Bayesian elicitation

In a Bayesian paradigm, utility functions are modeled as random variables drawn from a prior

distribution; so, even though the decision support system does not know the user’s exact pref-

erences, it has probabilistic information regarding her utility function parameters. The value of

a decision is computed by taking an expectation over all possible utility functions. The optimal

decision is the one with the highest expected utility.

The Bayesian paradigm provides a natural way for determining query strategies as well. As

the system obtains more information about user preferences, it incorporates this information

into the probabilistic utility model and updates its “beliefs” by applying Bayes’s rule. The value

of a query can be computed by considering the values of updated belief states (one for each

query response), weighted by the probability of corresponding responses. The expected value

of information (EVOI) is the increase in decision quality that a given query would provide.

The origins of the probabilistic utility uncertainty representation can be traced back to much

earlier research in game theory and decision theory: probabilistic modeling of possible payoff

functions provides the foundation to the well-established field of Bayesian games (Harsanyi,

1967, 1968); a related concept of adaptive utility is discussed in (Cyert and de Groot, 1979;

de Groot, 1983); and, Weber (1987) proposes using expectations over utility functions as a

possible criterion for decision making with incomplete preference information. Much closer to

our approach is the work done in the AI community in the last decade.

In (Chajewska et al., 2000), the authors introduce a Bayesian elicitation framework with

myopic query strategies. Such a strategy selects a query that greedily maximizes its EVOI
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without considering the impact of future queries. Intuitively, at each elicitation step, the query

is selected as if it were the last query to be asked before a decision is made. Uncertainty over

unstructured outcomes is represented by a mixture of Gaussians, which has to be refit after

each response because the posterior distribution is not conjugate for the prior for the type of

queries employed.

In principle, an optimal elicitation policy could be computed offline by taking into consid-

eration all possible sequences of questions and answers, providing an optimal tradeoff between

query costs (the burden of elicitation) and the potentially better decisions one can make with

additional preference information. As shown by Boutilier (2002), finding an optimal sequential

elicitation policy amounts to solving a partially observable Markov decision process (POMDP)

with a continuous state space. The sequential POMDP model is able to determine the value of a

sequence of queries, where in isolation, the myopic values of queries in that sequence might be

very low. Of course, solving any POMDP is generally computationally difficult, and elicitation

POMDP is no exception. The feasibility of this approach has only been demonstrated on very

small problems with no multiattribute structure.

Our approach extends the Bayesian paradigm to GAI utility functions over multiattribute

outcomes (Braziunas and Boutilier, 2005). Uncertainty is represented by a mixture of uniform

distributions over local value function parameters. For computational feasibility, we use a

myopic elicitation strategy that employs local bound queries. Because mixtures of uniforms

are closed under updates resulting from bound queries, we maintain an exact density over utility

parameters throughout the elicitation process. Experimental results show that our approach is

fast enough to support interactive real-time preference elicitation on large-size problems (as

tested on a 26-attribute domain from (Boutilier et al., 2003b)).

Elicitation under set-based uncertainty

When probabilistic information about user utilities is not available, a decision support system

can model the uncertainty by maintaining an explicit representation of the set U of feasible
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utility functions, viz. those consistent with its knowledge of the user’s preferences (e.g., based

on responses to previous elicitation queries). We refer to this form of uncertainty as set-based,

or strict (French, 1986), uncertainty. The set U is updated—reduced in size—when new pref-

erence information is received during the elicitation process. Unlike the Bayesian case, we

cannot say anything about the relative likelihood of the different utility functions in U . If ap-

propriate query types are used, the space U can be conveniently characterized by a collection

of linear constraints on utility function parameters; if each parameter is bounded, U is simply

a convex polytope in utility parameter space.

As in the case of Bayesian elicitation, two main issues have to be addressed: how to make

decisions given this form of set-based uncertainty, and how to come up with good elicitation

strategies. For set-based uncertainty, there is no consensus regarding the best decision crite-

rion. The most common decision rules include maximin return, Laplace’s criterion, and min-

imax regret. The maximin criterion (Wald, 1950; Salo and Hämäläinen, 2004) recommends

an outcome whose worst-case utility is highest. It is robust, since it provides a minimum

utility guarantee, but is often too pessimistic. Laplace’s criterion simply treats strict uncer-

tainty as uniform uncertainty, and is therefore closer to the Bayesian approach; several non-

Bayesian methods (Salo and Hämäläinen, 2001; Iyengar, Lee, and Campbell, 2001; Ghosh and

Kalagnanam, 2003; Toubia, Hauser, and Simester, 2004) use this criterion implicitly by rec-

ommending a decision that is optimal for the utility polytope center (or some approximation

thereof).

Under the minimax regret decision rule, the system recommends the outcome that mini-

mizes maximum regret (or utility loss) with respect to all possible realizations of the user’s

utility function. First described by Savage (1951) in the context of uncertainty over world

states, it has been advocated more recently for robust decision making with incompletely spec-

ified utility functions (Boutilier et al., 2001; Salo and Hämäläinen, 2001; Boutilier et al., 2006).

Compared to other decision rules, the minimax regret criterion stands out as a reasonable choice

because it is intuitive, natural and robust with respect to the worst-case loss under any realiza-
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tion of a user’s utility function (it provides the tightest bound on such loss).

Minimax regret can be employed to guide the elicitation process as well. With strict uncer-

tainty, many previous approaches (Iyengar et al., 2001; Ghosh and Kalagnanam, 2003; Hol-

loway and White, 2003; Toubia, Simester, Hauser, and Dahan, 2003; Toubia et al., 2004)

adopted methods for selecting elicitation queries that could be classified under the general

principle of uncertainty reduction. The central idea is to choose queries according to criteria

based on the size and shape of the feasible utility set. The goal is to reduce the volume of the

utility polytope as fast as possible, while also considering the polytope’s shape (so that un-

certainty is “balanced” across multiattribute dimensions). The main limitation of uncertainty

reduction methods is the absence of decision quality considerations in elicitation. For instance,

one can be quite confident in the quality of a decision despite the fact that considerable uncer-

tainty remains about the user’s utility function. The minimax regret criterion does not suffer

from this limitation, and effectively drives the elicitation process towards promising regions

of the utility space. Each response to a preference query results in a new decision situation

inducing a new level of minimax regret (note that regret cannot increase with more preference

information). The system can query the user until minimax regret reaches an acceptable level,

elicitation costs become too high, or some other termination criterion is met.

Previous work on utility elicitation with the minimax regret criterion has focused on flat

utility functions over outcomes with no multiattribute structure (Wang and Boutilier, 2003),

additive utilities (Boutilier, Sandholm, and Shields, 2004c), and GAI utilities without seman-

tically sound local queries (Boutilier et al., 2006). In this thesis, we show how to extend

minimax regret computation to GAI models with semantically sound local structure, combine

several types of both local and global, bound and comparison, queries in elicitation strate-

gies, and achieve fast execution in practice for both constrained configuration problems (where

outcomes are defined by hard feasibility constraints over attribute instantiations) and database

problems (where outcomes are restricted to those in a finite database set). Our approach is

validated by experimental results on synthetic problems (with simulated users) as well as by
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an actual user study with 40 participants.

1.1.4 User experience

Interaction with the user is at the core of the automated preference elicitation framework. For

many users, queries involving numbers and probabilities are cognitively hard to answer; most

users are not experts and therefore require preliminary training. Real case studies often provide

evidence of inconsistent responses, errors, and various forms of biases (Simon, 1955; Tversky

and Kahneman, 1974; Camerer, Loewenstein, and Rabin, 2003; Pu, Faltings, and Torrens,

2003).

In addition to recommending good options, successful decision support systems must be

natural and intuitive, fast (responsive), and efficient (take only as much user time and effort as

is necessary). To evaluate different approaches, they have to be implemented in real systems,

and tested with real users. Peintner, Viappiani, and Yorke-Smith (2008) provide a recent survey

of actual decision support systems. However, few of them have been tested with real users (see

(Pu and Chen, 2008) for some exceptions).

To evaluate our GAI-based framework for automated utility elicitation, we implemented

the UTPREF recommendation system and tested it in a formal user study with 40 participants.

UTPREF is a software tool that explicitly models user preferences with a GAI utility function,

incrementally acquires preference information through a sequence of queries and responses,

and recommends a minimax regret-optimal option to the user. It employs several types of GAI

queries that can be classified as either comparison or bound queries; queries are further distin-

guished by the type of outcomes involved (local or global). All query types used have a precise

decision-theoretic semantics dictated by the theory of generalized additive independence, and

responses to such queries impose linear constraints on the GAI model parameters. An equally

important characteristic of these query types is their user-friendliness and usefulness in practi-

cal applications.

While very effective in simulated experiments, minimax regret-based elicitation has not
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been tested before in realistic domains with real users. We conduct a user study with the

UTPREF system with three main objectives: 1) to assess overall user comprehension and ac-

ceptance of minimax regret-based elicitation; 2) to measure the costs—in terms of time and

perceived difficulty—of different query types; and 3) to evaluate the effectiveness of the GAI

utility representation as a model of user preferences, investigate the importance of context

in local queries in GAI models, and compare different query strategies. The primary task

for the 40 participants was to search for suitable rental apartments, using the UTPREF sys-

tem, from a database of Toronto apartments. Our results are very encouraging (Braziunas and

Boutilier, 2010). We demonstrate that minimax regret is an intuitive, comprehensible decision

criterion that can be used to drive effective querying strategies. UTPREF generally produces

high-quality recommendations with minimal user preference revelation, and GAI utility mod-

els perform better than simple additive models with respect to several recommendation quality

measures. Another observation is that simple local queries that omit the local context informa-

tion perform as well as semantically correct local queries. Finally, the study also allows us to

estimate the cognitive costs of different query types, which is very useful in designing better

query strategies.

1.2 Contributions

The central task described in this thesis is the development, implementation and evaluation of

the comprehensive decision-theoretic framework for automated utility elicitation. Our paradigm

casts preference elicitation as an integral part of a sequential process that combines intelligent

querying strategies and decision making under utility function uncertainty. Below, we provide

our major contributions in a list format:

GAI utility representation

• Identification of problems in earlier methods for GAI utility elicitation
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• A new semantically sound representation of GAI utilities that preserves their local struc-

ture

• Definition of local value functions as a generalization of LVFs in additive utilities (using

the notion of factor conditioning sets)

• An efficient graphical search algorithm for computing GAI structure parameters

• Identification of semantically sound local and global queries for effective elicitation of

GAI utility parameters

Bayesian elicitation

• Application of the Bayesian approach to elicitation of local GAI utility parameters

• Design and implementation of a tractable elicitation algorithm using local queries and

mixture-of-uniforms priors

• Experimental analysis of the algorithm’s performance on large problems using simulated

user utilities

Minimax-regret based elicitation

• Tractable formulation for computing minimax regret in GAI models for both configura-

tion and database problems

• MMR-based elicitation of GAI parameters using semantically sound local and global

queries

• Experimental validation of the elicitation algorithm
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UTPREF recommendation system and user study

• An implementation of the UTPREF recommendation system, the first user-tested system

that uses GAI utilities for preference modeling

• The first user study (with 40 participants) to evaluate effectiveness of the minimax regret

based approach to utility elicitation, GAI utilities for preference modeling, and costs of

different query types.

1.3 Outline

Chapter 2 introduces relevant background material from decision and utility theory (such as

decision making under certainty and uncertainty, preference structures over multiattribute out-

comes, and factored utility representations), and provides a historical and cross-disciplinary

overview of previous approaches to preference elicitation. We concentrate on a few key aspects

of the problem: what types of queries can be used to extract user preferences, how to repre-

sent utility uncertainty, how to make decisions with partial preference information, and how

to devise good elicitation strategies. We survey research fields outside computer science (both

historical and current) where preference elicitation plays a central role: imprecisely specified

multiattribute utility theory (ISMAUT), its extensions to engineering design and configuration

problems, conjoint analysis (in marketing), and analytical hierarchy process (in decision anal-

ysis). We also provide an overview of recent attempts to answer the key preference elicitation

questions above in the field of AI.

In Chapter 3, we describe the decision-theoretic foundations that support local elicitation

of GAI utilities and introduce the parameterized representation of GAI utilities that will be

used in the remaining chapters. The first part of the chapter is a detailed introduction to GAI

utility models, based on the original work by Fishburn (1967b). The second part deals with

semantically sound representation of local structure in GAI utilities. Local structure facilitates

not only representation, but also elicitation of utility parameters. In the last part of the chapter,
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we present the set of queries for elicitation of GAI utility parameters that we use in our elicita-

tion framework (in both Bayesian and strict uncertainty settings). This chapter is based on the

work that first appeared in (Braziunas and Boutilier, 2005).

The foundational material in Chapter 3 applies equally to the following two chapters, which

deal with the Bayesian (Chapter 4) and strict (Chapter 5) representation of uncertainty over

possible GAI utility functions. In each case, two issues are addressed: 1) how to make good

decisions when full utility information is not available; and, 2) what is the best elicitation

strategy when further preference information can be obtained. When uncertainty over utilities

is quantified probabilistically, Bayesian principles can be applied to both decision making and

elicitation of user preferences. In Chapter 4, we propose a mixture-of-uniforms probability

model to specify uncertainty over the local parameters of the GAI utility function and use it to

perform effective elicitation driven by a myopic EVOI strategy. We conclude the chapter with

experimental results on a few large problems with simulated user utilities. Our approach to the

Bayesian elicitation of the GAI utilities was first described in (Braziunas and Boutilier, 2005)

(and summarized in (Braziunas and Boutilier, 2006)).

Chapter 5 deals with GAI utility elicitation under strict uncertainty. We present tractable

algorithms for utility elicitation for configuration (using mixed integer programs) and database

(using intelligent search techniques) problems. The minimax regret criterion is used for both

decision making and elicitation under utility function uncertainty. We finish the chapter by

comparing the performance of various elicitation strategies on several configuration and database

problems (with simulated users). The core results in this chapter were published in (Braziunas

and Boutilier, 2007).

Chapter 6 concentrates on human-centred issues of utility elicitation. In the first part of the

chapter, we present the UTPREF recommendation system that searches multiattribute prod-

uct databases using the minimax regret criterion. In the second part, we report on a study

involving 40 users interacting with the UTPREF system, configured to help users find rental

accommodation in Toronto. The study is designed to test the effectiveness of regret-based elic-
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itation, evaluate user comprehension and acceptance of minimax regret, and assess the relative

difficulty of different query types. The results of the study were published in (Braziunas and

Boutilier, 2010).

We conclude in Chapter 7 by providing a summary of the thesis contributions and promising

directions for future work.
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This chapter provides the background material for the thesis, and surveys related work on

preference elicitation from a computer scientist’s perspective. We consider both historical and

current approaches to preference elicitation, concentrating on a few key aspects of the problem.

After introducing the relevant concepts and notation of multiattribute utility theory (MAUT),

we describe “classical” decision analysis, consider ways to represent uncertainty over utility

functions, and summarize various criteria for decision making and query selection with partial

utility information. We then survey some research fields where preference elicitation plays a

central role. Imprecisely specified multiattribute utility theory (ISMAUT) is one of the earlier

attempts to tackle decision making under partial preference information in classical decision

analysis. Its extensions to engineering design and configuration problems have been influential

in spurring recent interest in preference elicitation among artificial intelligence researchers.

Conjoint analysis and analytical hierarchy process (AHP) methods were developed largely in

isolation in the fields of marketing research and decision analysis; nonetheless, many issues

involving preference elicitation are common. The chapter concludes with a brief overview of

recent approaches to preference elicitation in the AI research.

2.1 Decision and utility theory

In this section we provide the background for the decision-theoretic treatment of preferences,

including decision making under certainty and uncertainty, preference structures over multiat-

tribute outcomes, and factored utility representations. Decision theory lies at the intersection

of many academic disciplines – statistics, economics, psychology, game theory, operations re-

search, and others. Assuming a set of axioms for rational behavior, it provides a theory for

modeling user preferences and making optimal decisions based on these preferences. The fol-

lowing summary of main concepts is primarily based on the works of von Neumann and Mor-

genstern (1947); Savage (1954); Fishburn (1970); Keeney and Raiffa (1976); French (1986);
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French and Insua (2000).

In the basic formulation of a decision problem, a decision maker (DM) has to select a single

alternative (or action) a from the set of available alternatives A. An outcome (or consequence)

x ∈ X of the chosen action a depends on the state of the world θ ∈ Θ, also commonly referred

to as the state of nature. The consequence function c : A × Θ 7→ X maps each action and

world state into an outcome. User preferences can be expressed by a value, or utility, function

v : X 7→ R that measures desirability of outcomes. The goal is to select an action a ∈ A that

leads to the best outcomes. If the world state θ is known, the set of outcomes is equivalent to the

set of alternatives; therefore, in such a case, we will often use these terms interchangeably. If

the state θ is unknown (or hidden), a DM has to choose an appropriate decision criterion (such

a maximin or minimax regret) that determines the procedure for selecting optimal alternatives.

When uncertainty over world states is quantified probabilistically, utility theory prescribes an

action that leads to the highest expected value.

The outcome space itself might be multidimensional. Most interesting problems fall in

this category, and we survey some ways of exploiting the structure of utility functions over

multidimensional outcomes.

2.1.1 Preferences under certainty

We first consider decisions under certainty. Since the nature state θ is known, each action leads

to a certain outcome. Preferences over outcomes completely determine the optimal action: a

rational person would choose the action that results in the most preferred outcome.

Let X be a set of outcomes over which a preference relation is defined. The notation x � y

means that a person weakly prefers outcome x to outcome y; that is, outcome x is deemed to

be as good as outcome y. The weak preference relation is commonly expected to satisfy the



CHAPTER 2. PREFERENCE ELICITATION: AN OVERVIEW 23

following two properties for the preferences to be considered rational:

Comparability: ∀x, y ∈ X, x � y ∨ y � x,

Transitivity: ∀x, y, z ∈ X, x � y ∧ y � z =⇒ x � z.

Weak preference is therefore a total preorder (or weak order) relation over the set of outcomes

X . It is natural to think of weak preference as a combination of strict preference relation �

and indifference relation ∼. The statement x � y means that x is strictly preferred to y; x ∼ y

means that x is exactly as good as y. Formally, for any two elements x, y ∈ X

x ∼ y ⇐⇒ x � y ∧ y � x, (2.1)

x � y ⇐⇒ y 6� x. (2.2)

It follows that strict preference is a strict order (� is asymmetric and transitive), and indiffer-

ence is an equivalence relation (∼ is reflexive, symmetric, and transitive).

Weak preferences can be represented compactly by a numerical function. An ordinal value

function v : X 7→ R represents or agrees with the ordering � when for all x, y ∈ X

v(x) ≥ v(y) ⇐⇒ x � y. (2.3)

A representation theorem gives necessary and sufficient conditions under which some qual-

itative relation can be represented by a numerical ranking, or scale. In case of weak prefer-

ences, an agreeing ordinal value function can always be constructed if the outcome set X is

finite or countably large. Ordinal value functions are unique up to strictly increasing trans-

formations. Such functions are called ordinal scale functions. They contain only preference

ranking information; if v(x) ≥ v(y), we know that x is better (more preferred) than y, but we

cannot tell by how much it is better. It is meaningless to compare any linear combination of

ordinal scale values (such as the average or difference of outcome values).
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2.1.2 Preferences under uncertainty

In many settings, the consequences of an action are uncertain. Modern utility theory is based

upon the fundamental work of von Neumann and Morgenstern (1947). In this theory, uncer-

tainty is quantified probabilistically, and a rational decision maker is capable of expressing

preferences between lotteries, or probability distributions over a finite set of outcomes.

A simple lottery is a probability distribution over outcomes, where outcome xi is realized

with probability pi. In decision theory literature, it is conventionally denoted as

P = 〈p1, x1; p2, x2; . . . ; pn, xn〉. (2.4)

We will sometimes use P (xi) = pi to denote the probability of outcome xi in the lottery P . It

is common to omit outcomes with zero probabilities in the lottery notation.

Let P be the set of all simple lotteries. If P and Q are two lotteries in P , than any convex

combination of P and Q is also a simple lottery. That is, for α ∈ [0, 1], αP + (1 − α)Q

is a simple lottery that assigns probability αP (xi) + (1 − α)Q(xi) to an outcome xi. This

way of combining simple lotteries can be extended to any finite number lotteries. The result

is a compound lottery whose outcomes themselves are lotteries. Any compound lottery can

be reduced to an equivalent simple lottery where the final outcomes are realized with same

probabilities. An important assumption about preferences over lotteries is that the decision

maker views any compound lottery and its reduction as equivalent; that is, only the ultimate

probabilities of outcomes matter. Therefore, it suffices to consider preferences over the set of

simple lotteries.

Utility theory axioms

As in the case of certainty, the rational decision maker is assumed to have a complete and tran-

sitive preference ranking � over the set of simple lotteries P . The continuity, or Archimedean,
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axiom states that no alternative is infinitely better (or worse) than others:

Continuity: ∀P 1, Q, P 2 ∈ P , (2.5)

P 1 � Q � P 2 =⇒ αP 1 + (1− α)P 2 � Q � βP 1 + (1− β)P 2,

for some α, β ∈ (0, 1).

The continuity axiom is required for existence of a utility function u : P 7→ R that represents

the preference relation � on simple lotteries. An additional independence axiom is necessary

to impose a very convenient linear structure on the utility function u:

Independence: ∀P 1, P 2, Q ∈ P , and α ∈ (0, 1), (2.6)

P 1 � P 2 =⇒ αP 1 + (1− α)Q � αP 2 + (1− α)Q.

Independence axiom requires that preferences over P 1 and P 2 carry over to compound lotteries

involving some other lottery Q.

The most important result that follows is the expected utility representation theorem. It

states that if and only if the weak preference relation on simple lotteries is (1) complete, (2)

transitive, (3) satisfies the continuity axiom, and (4) satisfies the independence axiom, then

there exists an expected or linear utility function u : P 7→ R which represents �. The utility

function u has the following properties:

(1) u(P ) ≥ u(Q) ⇐⇒ P � Q, (2.7)

(2) u(αP + (1− α)Q) = αu(P ) + (1− α)u(Q),

∀P,Q ∈ P , and α ∈ [0, 1].

Expected utility theorem

We can identify any outcome x ∈ X with a degenerate lottery P x = 〈1, x; 0, . . .〉, where

outcome x occurs with certainty. This allows us to extend the preference relation � on simple

lotteries to outcomes. The utility of outcome x is then the same as that of the corresponding
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degenerate lottery: u(x) = u(P x). Using induction and linearity of the utility function u, it can

be shown that the utility of any simple lottery P = 〈p1, x1; p2, x2; . . . ; pn, xn〉 is the expected

value of its outcomes:

u(P ) = u(〈p1, x1; p2, x2; . . . ; pn, xn〉) =
n∑
i=1

piu(xi). (2.8)

This key result allows us to represent preferences over an infinite set of simple lotteries by a

utility function over a finite set of outcomes.

Utility function uniqueness and standard lotteries

It is a well-known fact that utility functions are unique up to positive affine transformations

(due to the utility theory axioms and the expected utility theorem). That is, if u′ = au + b,

a > 0, then both u′ and u represent the same preference relation. Let x> be the best outcome,

and x⊥ be the worst outcome in X . By setting a = 1
u(x>)−u(x⊥)

, b = −u(x⊥)
u(x>)−u(x⊥)

, any utility

function u can be transformed to the normalized function u∗ = au + b whose range is [0, 1]

(with u∗(x>) = 1, u∗(x⊥) = 0).

A standard lottery 〈p, x>; (1− p), x⊥〉 is a simple lottery with positive support on only two

special outcomes: the best outcome x>, and the worst outcome x⊥. Now, assume that a DM is

indifferent between some outcome x and the standard lottery 〈p, x>; (1− p), x⊥〉. Assuming a

normalized utility function, we can show that utility of outcome x is p:

x ∼ 〈p, x>; (1− p), x⊥〉 ⇐⇒

u(x) = u(〈p, x>; (1− p), x⊥〉) = pu(x>) + (1− p)u(x⊥) = p1 + (1− p)0 = p. (2.9)

That is, on the normalized [0, 1] utility scale, u(x) is exactly equal to p, where p is the probabil-

ity for which x is equally preferred to a lottery in which the best possible outcome x> happens

with probability p, and the worst outcome x⊥ happens with probability 1− p.

A standard lottery is useful in elicitation of utilities. In an ideal scenario, since u(x) = p,

we could assess the utility outcome x by asking the user for the probabability p at which she
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would be indifferent between the outcome x for certain, and the standard lottery 〈p, x>; (1 −

p), x⊥〉. In reality, such preference judgments are difficult for humans and subject to noisy

responses; thus, in most cases, better ways of obtaining preference information are necessary

(see Section 2.2.1.1).

2.1.3 Multiattribute outcomes

In practice, the set of outcomes X is often endowed with multidimensional structure. For ex-

ample, each alternative in A can be evaluated on several criteria, or attributes. Under certainty,

action a ∈ A maps to a point in a multiattribute space; under uncertainty, it maps to a distribu-

tion over points in that space. The goal of multiattribute utility theory (MAUT) is to investigate

numerical representations that reflect structure in user preferences over multiattribute spaces.

Assume a set of N attributes X1, X2, . . . , XN . Each attribute has a finite domain (a set of

possible levels, or values). For ease of notation, depending on the context, we use Xi to refer

both to attributes and their domains. The set of all outcomes (instantiations) X = X1×· · ·×XN

is the Cartesian product of attribute levels. Multidimensional outcomes (such as x ∈ X) will

generally be denoted by lowercase bold symbols.

Given an index set I ⊆ {1, . . . , N}, we define XI = ×i∈IXi to be the set of partial out-

comes (or suboutcomes) restricted to attributes indexed by I , and xI to be the same restriction

applied to some outcome x. IC = {1, . . . , N} \ I is the complement of I .

Example 2.1 Assume a set of three binary attributes X1, X2, X3; each attribute Xi can take

one of two values, either x1
i or x2

i . The set of all outcomes X consists of 8 outcomes: X =

{x1
1x

1
2x

1
3, x

2
1x

1
2x

1
3, . . . , x

2
1x

2
2x

2
3}. Given an index set I = {1, 2}, XI is a set of partial outcomes,

restricted to attributes X1 and X2: XI = {x1
1x

1
2, x

2
1x

1
2, x

1
1x

2
2, x

2
1x

2
2}.

Preferential independence and the ceteris paribus condition

If preferences over multiattribute outcomes exhibit sufficient structure, a preference relation

can be modeled more concisely than allowed by the unstructured model discussed in the pre-
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vious subsection. In such a case, utility functions can be decomposed into subutility functions,

defined over subsets of attributes. The simplest independence condition is called preferen-

tial independence. Attributes indexed by I are preferentially independent of the remaining

attributes indexed by IC iff

(xI ,y) � (x′I ,y) for some y ∈ XIC =⇒ (2.10)

(xI ,y
′) � (x′I ,y

′) for all y′ ∈ XIC .

That is, the preferences over XI , when all other attributes are held fixed, do not depend on the

actual values of the remaining attributes. Therefore, a statement xI � x′I , ceteris paribus (all

else being equal), is a concise way of stating (xI ,y) � (x′I ,y) for all y ∈ XIC .

Ceteris paribus preferential statements provide a natural language for expressing multiat-

tribute preferences. In AI, ceteris paribus based assumptions are central to logical models of

qualitative decision theory (Wellman and Doyle, 1991; Doyle, Shoham, and Wellman, 1991;

Doyle and Wellman, 1994; Boutilier, 1994; Tan and Pearl, 1994; Bacchus and Grove, 1996;

Doyle and Thomason, 1999).

CP-networks

One issue not addressed by ceteris paribus logic theories is that of compact and efficient rep-

resentation of preferential independence statements. CP-networks, introduced by Boutilier,

Brafman, Hoos, and Poole (1999), provide a popular graphical model that exploits conditional

preferential independence among attributes. To create the structure of a CP-net, for each at-

tribute Xi, a user must indicate which other attributes — parents of Xi — impact the prefer-

ences over values of attribute Xi. Then, for each possible instantiation of the parents of Xi,

the user provides a qualitative preference relation over the values of Xi, all else being equal.

Given a CP-net, the ceteris paribus semantics induces a partial order over full outcomes. Be-

sides providing a compact and natural representation of preferences, a CP-net G can be used

to perform preferential comparison between full outcomes (“Does G entail x � y?”), partial
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outcome optimization (“What is the best outcome x given G?”), and outcome ordering (“Is

there some ranking in which x � y?”).

While partial outcome optimization and outcome ordering are computationally tractable

(polynomial in the size of the network), dominance testing is more complicated. In general,

answering dominance queries is PSPACE-complete; however, polynomial algorithms exist for

tree and polytree structured networks. Another complication is cyclicity: while quite natural in

certain settings, cyclical networks are not guaranteed to have a consistent preference ranking.

Finally, we should note that introduction of ceteris paribus indifference statements can also lead

to inconsistent networks.

CP-nets have been extended to deal with hard constraints (Boutilier, Brafman, Domshlak,

Hoos, and Poole, 2004a) and quantitative utilities (Boutilier et al., 2001). Another generaliza-

tion is the TCP-net, which adds conditional importance relations among variables (Brafman

and Domshlak, 2002).

Preferences as soft constraints

An alternative, but related, framework for representation and elicitation of multiattribute pref-

erences treats preferences as a “relaxed” form of classical constraints. Solving a constraint

satisfaction problem (CSP) requires finding an outcome that satisfies all specified “hard” con-

straints on attribute values (Dechter, 2003). The soft constraint framework allows one to assign

either discrete or continuous levels of satisfaction to each constraint over a subset of attributes

(Prestwich, Rossi, Venable, and Walsh, 2005; Rossi, Venable, and Walsh, 2011). There are

many different soft-constraint formalisms (such as weighted constraints, valued constraints,

probabilistic constraints, and others), each having different constraint semantics, solution ob-

jectives, and solution techniques.

Some recent work within the soft constraint framework considers situations in which some

of the soft-constraint values (“preferences”) are missing. Gelain, Pini, Rossi, Venable, and

Walsh (2010) provide an interactive procedure that interleaves branch-and-bound search with
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elicitation steps as it searches for necessarily optimal solutions (solutions that are non-dominated

under all possible completions of missing values). Rossi and Sperduti (2004) also use an in-

teractive constraint framework, where a user can state constraint preferences as well as prefer-

ences over outcomes recommended by the system.

While some problems addressed by the soft-constraint formalisms are closely related to

those at the core of automated decision analysis, the underlying semantics of preferences and

utilities is very different. In Chapter 5, we will be using some of the CSP techniques to model

and solve constrained optimization problems.

Pareto-optimal outcomes

Pareto-optimality is an important concept in MAUT under certainty. Consider a set of multi-

attribute alternatives A, such that each attribute is preferentially independent of the remaining

attributes. Without loss of generality, we can assume that preferences are monotonically in-

creasing with the value of each attribute (for discrete attributes, a notion of Pareto-optimalty

requires some natural ordering of attribute values). Then, for x,y ∈ X,

x dominates y if

xi � yi for i = 1, . . . , N , with xi � yi for at least one i. (2.11)

The Pareto optimal set (also known as efficient set or admissible set) is the set of all nondom-

inated alternatives in A. It is common to focus solely on the Pareto optimal set because a

Pareto-dominated alternative cannot be optimal for any utility function or preference relation

consistent with local (attribute-specific) preferences.

Utility independence

The idea of preferential independence extends to preferences over lotteries, leading to the no-

tion of utility independence. Let P be the set of all lotteries (probability distributions) on X,
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and PI be the set of all lotteries on XI . For P ∈ P , PI is the marginal lottery of P over XI :

PI(xI) =
∑

y∈X
IC

P (xI y). (2.12)

User preferences for XI are utility independent of XIC if preferences for marginal lotteries over

XI do not depend on the particular assignment to the remaining attributes (those indexed by

IC). Given a marginal lottery PI , there is a unique lottery P y such that its marginal distribution

over XI is PI , and the probability of outcome y ∈ XIC is 1:

∀ xI ∈ XI , y′ ∈ XIC ,

P y(xI y′) =


PI(xI), iff y′ = y,

0, otherwise.

Then, in a way analogous to preferential independence, we can formally define utility indepen-

dence as follows:

P y � Qy for some y ∈ XIC =⇒ (2.13)

P y′ � Qy′ for all y′ ∈ XIC .

A graphical UCP-net model (Boutilier et al., 2001) that exploits conditional utility inde-

pendence among attributes is the quantitative analogue of CP-nets (we will discuss some prob-

lematic aspects of the UCP-net representation in section 3.2.1.2).

Additive independence

Preferential and utility independence focus on the relationship between two complementary

sets of attributes. Additive and generalized additive independence apply to multiple partitions

of attributes, either into single attributes or arbitrary sets of attributes. Additive independence

relations require much stronger assumptions about the structure of preferences; when such

assumptions are justified, additive independence leads to a simple and compact additive utility

representation.
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Additive independence is a generalization of the utility independence concept. Given a lot-

tery P , let P{i} be the marginal lottery on the attribute Xi (as always, we consider N attributes

X1, . . . , XN ).

Definition 2.1 (Additive independence condition) Fishburn (1965)

Attributes X1, . . . , XN are additively independent iff

(P{1}, . . . , P{N}) = (Q{1}, . . . , Q{N}) =⇒ P ∼ Q,

where P{i} ∈ P{i} denotes the marginal lottery of P ∈ P on attribute Xi (for i = 1, . . . , N ).

That is, the additive independence condition holds if and only if a decision maker is indifferent

between two lotteries whenever their marginal distributions on each attribute are the same.

When additive independence holds, preferences can be represented by a utility function u

that can be written as a sum of single-attribute subutility functions (Fishburn, 1965):

u(x) =
N∑
i=1

ui(xi). (2.14)

The additive utility representation also follows if all subsets of attributes are mutually prefer-

entially independent of their compliments (Keeney and Raiffa, 1976).

Subutility functions ui(xi) are often written as a product of local value functions vi and

scaling constants, or weights, λi (often denoted as wi):

u(x) =
N∑
i=1

ui(xi) =
N∑
i=1

λivi(xi), (2.15)

where ui(xi) = λivi(xi). The two additive representations — the sum of attribute subutil-

ity functions and the sum of weighted local value functions — are equivalent; the weighted

representation is almost always used under the assumption that scaling coefficients λi form a

simplex (i.e.,
∑

i λi = 1, λi ≥ 0) and local value functions are normalized to be in the range

[0,1].

Assume an arbitrary additive function u(x) =
∑

i ui(xi). Let u> = u(x>) denote the

utility value of the best outcome x> = (x>1 , x
>
2 , . . . , x

>
N), and u⊥ = u(x⊥) to denote the utility
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value of the worst outcome x⊥ = (x⊥1 , x
⊥
2 , . . . , x

⊥
N). We use similar notation for subutilities

of the best and worst levels of single attributes: u>i = ui(x
>
i ), and u⊥i = ui(x

⊥
i ). As we

have shown before, one can always define a strategically-equivalent normalized utility function

u∗(x) = u(x)−u⊥
u>−u⊥ . Furthermore, u∗ itself is an additive function:

u∗(x) =
u(x)− u⊥

u> − u⊥
=

∑
ui(xi)−

∑
u⊥i∑

u>i −
∑
u⊥i

=

∑
(ui(xi)− u⊥i )∑

(u>i − u⊥i )
= (2.16)

=
∑ u>i − u⊥i∑

(u>i − u⊥i )

ui(xi)− u⊥i
u>i − u⊥i

(2.17)

=
∑

λi vi(xi), (2.18)

where λi =
u>i −u⊥i∑
(u>i −u⊥i )

, and vi(xi) =
ui(xi)−u⊥i
u>i −u⊥i

. From the expressions for λi and vi, we can

see that
∑

i λi = 1, 0 ≤ λi ≤ 1 and 0 ≤ vi ≤ 1. We should also note that although

scaling constants λi are often referred to as attribute “weights”, they do not reflect attribute

importance; rather, they denote relative value ranges of attributes (Fishburn, 1965; Keeney and

Raiffa, 1976).

Example 2.2 Table 2.1 shows an example of an additive function, together with its strategically-

equivalent normalized representation that uses scaling constants and local value functions.

Linear utility functions

If attributes xi are numerical and the utility function can be written as

u(x) =
N∑
i=1

λi xi, (2.19)

then it is linear. Such functions are quite commonly assumed in operations research, cost-

benefit analysis, and economics. In addition to conditions required for existence of additive

value functions, there is an additional property, known as constant relative tradeoff between

every pair of attributes, that has to be satisfied. A pair of attributes Xi and Xj has a constant

relative tradeoff ρij if the decision maker is always indifferent between some outcome x and an

outcome obtained by increasing Xi and decreasing Xj in the ratio ρij : 1. Linear functions are
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x1 u1(x1) x2 u2(x2) x3 u3(x3)

x1
1 5 x1

2 6 x1
3 0

x2
1 10 x2

2 3 x2
3 7

x3
1 12 x3

2 1 x3
3 2

(a) Additive function u

x1 u∗1(x1) λ∗1 v∗1(x1) x2 u∗2(x2) λ∗2 v∗2(x2) x3 u∗3(x3) λ∗3 v∗3(x3)

x1
1 0 0 x1

2 0.26 1 x1
3 0 0

x2
1 0.26 0.37 0.71 x2

2 0.11 0.26 0.4 x2
3 0.37 0.37 1

x3
1 0.37 1 x3

2 0 0 x3
3 0.11 0.29

(b) Normalized additive function u∗

Table 2.1: Table (a) shows an example of an additive utility function u(x) = u1(x1)+u2(x2)+u3(x3)
with three attributes, each having three values. Table (b) shows parameters of a strategically-
equivalent normalized utility function u∗(x) = u∗1(x1) + u∗2(x2) + u∗3(x3) = λ∗1v

∗
1(x1) +

λ∗2v
∗
2(x2) + λ∗3v

∗
3(x3).

therefore measured on a more restrictive ratio scale: they are unique up to scaling by a positive

constant.

Generalized additive independence

While additive models are by far the most commonly used in practice, generalized additive

independence (GAI) models have recently gained attention because of their additional flex-

ibility (Bacchus and Grove, 1995; Boutilier et al., 2001, 2003b; Gonzales and Perny, 2004;

Boutilier et al., 2005; Braziunas and Boutilier, 2005, 2007). The conditions under which a

GAI model provides an accurate representation of personal preferences were first defined by

Fishburn (1967b, 1970), who introduced the model. GAI is a generalization of the additive

model, where independence holds among certain subsets of attributes, rather than individual

attributes.

Consider a subset of attributes FI = {Xi | i ∈ I} that contains the attributes whose indices
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x1 u1(x1)

x1y1 100

x2y1 70

x1y2 90

x2y2 50

(a) Factor F1

x2 u2(x2)

y1z1 100

y2z1 50

y1z2 60

y2z2 30

(b) Factor F2

x u1(x1) + u2(x2) u(x)

x1y1z1 100+100 200

x2y1z1 70+100 170

x1y2z1 90+50 140

x2y2z1 50+50 100

x1y1z2 100+60 160

x2y1z2 70+60 130

x1y2z2 90+30 120

x2y2z2 50+30 80

(c) Utilities of full outcomes

Table 2.2: An example of a GAI model with three binary attributes X1, X2 and X3 grouped into two
GAI factors F1 = {X1, X2}, and F2 = {X2, X3}. Therefore, u(x) = u1(x1) + u2(x2).
All instantiations of factor attributes are listed in the first column of Tables 2.2a and 2.2b.
The set of all outcomes X is listed in the first column of Table 2.2c. The second column of
Tables 2.2a and 2.2b shows the subutility values of factor outcomes, and the second and third
columns of Table 2.2c shows the full utility value of outcomes in X.
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are in some index set I ⊆ {1, . . . , N}. We will refer to such attribute subsets as factors.

Assume a collection of M attribute subsets (factors) {FI1 , FI2 , . . . , FIM} that cover the set of

all attributes, so that FI1∪FI2 · · ·∪FIM = {X1, X2, . . . , XN}. The factors (and their associated

sets of indices) will be commonly enumerated from 1 to M : F1, F2, . . . , FM . In such a case, it

will be assumed that Fj = FIj . For a factor Fj , xIj , or simply xj , is a particular instantiation of

its attributes. Table 2.2 shows an example of GAI model with three attributes and two factors.

Let P be the set of all lotteries (probability distributions) on X, and PI be the set of all

lotteries on XI . As before, for P ∈ P , PI is the marginal lottery of P over XI . By convention,

Pj = PIj will denote the marginal lottery over all the partial outcomes in factor Fj .

Definition 2.2 (Generalized additive independence condition) Fishburn (1967b)

Factors F1, . . . , FM are (generalized) additively independent if

(P1, . . . , PM) = (Q1, . . . , QM) =⇒ P ∼ Q,

where Pj, Qj ∈ Pj are the j-th marginals of P,Q ∈ P (for j = 1, . . . ,M ). That is, the GAI

condition holds if and only if a decision maker is indifferent between two lotteries whenever

their marginal distributions on XI1 , . . . ,XIM are the same.

When generalized additive independence holds, the utility of a multiattribute outcome can

be written as a sum of subutilities involving GAI subsets of attributes:

u(x) =
M∑
i=1

ui(xIi). (2.20)

Example 2.3 Let’s consider the simplest non-trivial GAI model with three attributes X1, X2

and X3 grouped into two GAI factors indexed by I1 = {1, 2}, and I2 = {2, 3} (similar to the

example in Table 2.2). In a travel planning scenario described in the introduction, X1 could be

the airline, X2 the flight class, and X3 the flight length. If, quite realistically, the strength of

user preferences over flight class (e.g., economy or business) and airline depends on the flight

length, then the simple additive user utility function

uA(x) = u1(x1) + u2(x2) + u3(x3)
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cannot adequately represent her true preferences. In contrast, a GAI function with two factors

can express such conditional preferences:

uGAI(x) = u1(x1, x2) + u2(x2, x3).

GAI models will be the central subject of this thesis.

Other factored utility representations

Several other quantitative representations of preferences over multiattribute outcomes have

been proposed in the decision analysis and AI literature. In addition to additive utility func-

tions, Keeney and Raiffa (1976) discuss conditions under which user preferences can be ex-

pressed by multilinear or multiplicative utility functions. In AI, Bacchus and Grove (1995)

explore the graphical utility representations of conditional additive independence (including

GAI models), Boutilier et al. (2001) propose UCP networks that combine GAI models with

CP-net semantics, and Engel and Wellman (2008a) explore a weaker notion of conditional

utility independence to define CUI networks. La Mura and Shoham (1999) use a different no-

tion of utility independence to introduce expected utility networks as undirected graphs that

contain both utility and probability dependence information.

2.2 Main aspects of preference elicitation

The increased interest in automated decision support tools in recent years has brought the

problem of automated preference elicitation to the forefront of research in decision analysis

(Dyer, 1972; White, Sage, and Dozono, 1984; Salo and Hämäläinen, 2001) and AI (Chajew-

ska, Getoor, Norman, and Shahar, 1998; Chajewska et al., 2000; Boutilier, 2002). The goal

of automated preference elicitation is to devise algorithmic techniques that will guide a user

through an appropriate sequence of queries or interactions and determine enough preference

information to make a good or optimal decision.
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In this section, we concentrate on a few key aspects of the preference elicitation problem.

The previous section dealt with various complete representations of preference information.

Here, we are interested in the actual process of acquiring such information as well as making

decisions with partially elicited utility functions. Therefore, we address issues of how to repre-

sent uncertainty over possible utility functions, how to make decisions without full knowledge

of user preferences, and how to intelligently guide the elicitation process by taking into account

the cost of interaction and potential improvement of decision quality.

2.2.1 “Classical” preference elicitation

Preference (or utility) elicitation is a process of assessing preferences or, more specifically,

utility functions. Utility elicitation literature is as old as utility theory itself; first attempts to

describe procedures for evaluating utility functions date back to the 1950s. In the “classical”

setting, a decision analyst’s task is to help elicit a decision maker’s (DM) preferences. Once

those preferences are extracted, the decision analyst calculates an optimal course of action

according to the utility theory, and recommends it to the decision maker (Keeney and Raiffa,

1976; Howard and Matheson, 1984; French, 1986).

There are many techniques for evaluating utility functions, and the whole process of elici-

tation is “as much of an art as it is a science” (Keeney and Raiffa, 1976). A classical approach,

involving an interaction between the decision analyst and the decision maker, usually consists

of five steps (Keeney and Raiffa, 1976; Farquhar, 1984). During the preparation for assess-

ment, the DM is acquainted with the decision problem, possible outcomes or attributes, and

various aspects of the elicitation procedure. The next stage is identification of relevant qualita-

tive characteristics of DM’s preferences. This could include determining the properties of the

utility function (such as continuity or monotonicity in case of numerical attributes), best and

worst outcomes or attribute levels, and independence relations among attributes for structured

outcome spaces. The central stage is specification of quantitative restrictions and selection of

a utility function. Here, the decision analyst asks various queries, some of which are described
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below, in an attempt to model DM’s preferences by a completely specified utility function.

Most of the approaches described in this survey depart from the classical form of elicitation

because of the complexity of this task. The last step usually involves checks for consistency

and sensitivity analysis. When inconsistencies are detected, the DM is asked to revise her pref-

erences. The goal of sensitivity analysis is to check the sensitivity of the output (which, in most

cases, is the decision recommended by the decision analyst) to the inputs — the utility model

and DM’s responses.

In the user study described in Chapter 6, elicitation sessions follow roughly the same basic

pattern described here.

2.2.1.1 Query types

The nature of queries is an integral part of the preference elicitation problem. Some queries are

easy to answer, but do not provide much information; and, vice versa, informative queries are

often costly. Another tradeoff to consider is the complexity of selecting a good query versus

its potential usefulness. Such aspects of preference elicitation depend on query types.

Here, we survey some queries that are commonly used in decision analysis and describe

their main characteristics. “Global” queries are applicable to situations where either the set

of outcomes does not have any structure, or, in case of multiattribute problems, that structure

is ignored and only full, or global, outcomes are considered. In most multiattribute problems,

people can meaningfully compare outcomes with no more than five or six attributes (Green and

Srinivasan, 1978). Therefore, most of the global queries have “local” counterparts that apply to

a subset of attributes. We assume that preferences over the set of outcomes X can be expressed

by a utility function u, and consider queries that help assess this function.

Order comparison Order queries are very simple queries that ask the user to compare a pair

of alternatives x and y; the user might prefer x to y, y to x, or be indifferent between the two.

Such queries are very common in practice and usually require little cognitive effort from the
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user. They are central in ISMAUT and conjoint analysis (Green and Rao, 1971; White, Dozono,

and Scherer, 1983; White et al., 1984). Unfortunately, often they are not very informative.

More complicated comparison queries ask the user to pick the most preferred alternative

from the set of k alternatives. This rather easy task actually provides k− 1 pairwise preference

comparisons (the selected alternative is preferred to all remaining choices), and is widely used

in choice-based conjoint analysis (Louviere et al., 2000; Toubia et al., 2004). At the most ex-

treme, a total ranking query expects the user to rank all specified alternatives; answering such

a query would provide preference information relating every pair of alternatives.

Most other utility elicitation queries involve simple lotteries, or gambles, with only two

outcomes. Let 〈x, p; y〉 be a lottery where x occurs with probability p and y occurs with prob-

ability 1 − p. We consider a general query expression 〈x, p; y〉 ≷ z, where everything except

one item is specified, and the user is asked to provide the value of the item that would make

the expression true. In the expression, x, y, z are outcomes in X , p is a probability, and ≷ is

either � or ≺.1 The following terminology and classification follows (Farquhar, 1984), who

describes queries for all possible combinations of known and unknown quantities in the query

expression, as well as more general queries involving two gambles.

Probability equivalence Probability equivalence queries elicit an indifference probability p

for which 〈x, p; y〉 ∼ z. In a standard gamble case, when x = x> and y = x⊥, the query

simply asks to specify the utility of z, and is therefore sometimes called a direct utility query.

While such queries have been used in research papers (Keeney and Raiffa, 1976; Gonzales and

Perny, 2004), it is unlikely that users can provide exact utility values for outcomes in real-world

situations. One possible generalization is to ask for bounds on the utility value; these bounds

can then be narrowed by asking binary comparison queries described below (Boutilier et al.,

2003b).

1Or, more generally,one of the three preference relations �,∼ and ≺.
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Preference comparison In a preference comparison between a gamble 〈x, p; y〉 and a sure

outcome z, a user is asked to specify a relation (� or ≺) that holds between the two. When

the gamble is a standard gamble, u(〈x>, p;x⊥〉) = p, and the query becomes equivalent to

“Is u(z) ≥ p?” with possible {yes, no} responses. Such query is called a standard gamble

comparison query, or bound query, since after the response, p becomes either the upper or

lower bound on u(z).

Standard gamble comparison queries are common in classical decision analysis literature

(Keeney and Raiffa, 1976). More recently, such queries have been used by Chajewska and

Koller (2000); Boutilier (2002); Wang and Boutilier (2003); Boutilier et al. (2003b, 2005);

Braziunas and Boutilier (2005, 2007, 2010), and others.

Implicit queries Until now, we assumed that a query is an explicit question posed by the

decision support system, and a response is a user’s reaction to the query. However, queries and

responses can be much more general. The system could pose “implicit” queries by changing the

user environment (such as options available on the web page), and observing the user’s behav-

ior (links followed, time spent on the page, etc.). Or, the user can be asked to view a fragment

of some action policy, and asked to critique the actions. A related theoretical framework is in-

verse reinforcement learning (Ng and Russell, 2000; Chajewska, Koller, and Ormoneit, 2001).

The goal is to recover the reward function (preferences) of an agent by observing execution of

an optimal policy.

The concept of revealed preference in economics (Mas-Colell, Whinston, and Green, 1995)

is also related to the topic of implicit queries. Here, the emphasis is on descriptive, rather than

prescriptive, aspects of human decision making. Observable choices that people make faced

with an economic decision provide the primary basis for modeling their behavior. A preference

relation does not exist a priori, but could be derived (or revealed) given observed choices that

follow certain axioms of rationality.
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2.2.1.2 Multiattribute elicitation

All the techniques described above could be also employed to simplify utility elicitation of

structured outcomes. To illustrate the main concepts, we consider the case of eliciting an

additive utility function

u(x) =
n∑
i=1

ui(xi) =
n∑
i=1

λivi(xi), (2.21)

where ui(xi) are subutility functions that can be written as a product of local value functions

vi and scaling factors, or weights, λi.

The assumed utility independence among attributes allows elicitation to proceed locally:

specifically, each vi can be elicited independently of other attribute values using any of the

techniques described above. Since attributes are preferentially independent, each attribute’s

best and worst levels (we shall call them anchor levels) can be determined separately. Let x>i

and x⊥i denote the best and worst levels, respectively, of attribute i. Local value functions vi

can be determined by locally measuring values of attribute levels with respect to the two anchor

levels. For example, one might use local standard gamble queries to assess vi(xi) by asking the

user for the probability p for which xi and the local standard lottery 〈p, x>i ; 1 − p, x⊥i 〉 would

be equally preferred, ceteris paribus.

What remains is to bring all the local value scales to the common global utility scale.

Essentially, we need to find the true utility of all “anchor” outcomes x>i and x⊥i relative to

some reference outcome x0 (it is customary to choose the worst outcome as default outcome,

and set its utility to 0). Then, eliciting u(x>i ,x
0
{i}C ) = ui(x

>
i ) and u(x⊥i ,x

0
{i}C ) = ui(x

⊥
i ) for

all attributes would ensure consistent scaling of subutility functions. Because additive utility

functions are unique up to positive affine transformations, it is usually assumed that both the

global utility functions and local value functions are scaled to lie between 0 and 1; the scaling

constants (weights) are also normalized such that λi ≥ 0 and
∑
λi = 1. In a normalized

additive utility function, scaling factors λi, which reflect attribute contributions to the overall

utility function, are simply equal to ui(x>i ).



CHAPTER 2. PREFERENCE ELICITATION: AN OVERVIEW 43

The scaling factors can be determined by asking utility queries involving full outcome

lotteries. The simplest way to elicit λi is to find the utility of (x>i ,x
⊥
{i}C ) for all i:

λi = u(x>i ,x
⊥
{i}C ). (2.22)

In this case, relevant utilities could be elicited by using global standard gamble queries. For ex-

ample, we could ask for the probability p for which the user is indifferent between the outcome

(x>i ,x
⊥
{i}C ) and the global standard gamble 〈p,x>; 1 − p,x⊥〉. Then, λi = u(x>i ,x

⊥
{i}C ) = p.

Of course, more realistically, instead of asking for the probability p directly, we could use a

sequence of binary standard gamble bound queries (or some other less direct queries) to assess

the value of p.

More general multiattribute utility functions, such as multiplicative or GAI, can also be

elicited using ideas of local value function elicitation and global scaling (see Chapter 3 and

previous work by Fishburn (1967a); Keeney and Raiffa (1976); Fishburn (1977)).

2.2.1.3 Problems with the classical paradigm

Complete preference information is rarely attainable in practice. In many realistic domains

where the outcome space is large, it is unreasonable to expect a user to provide preference

information about every outcome. In multiattribute settings with more than, say, ten attributes,

complete preference elicitation becomes difficult, as the number of alternatives is exponential

in the number of attributes.

Elicitation of quantitative utilities brings additional difficulties. Queries involving numbers

and probabilities are cognitively hard to answer; most users are not experts and therefore re-

quire preliminary training. Real case studies often provide evidence of inconsistent responses,

errors, and various forms of biases (Simon, 1955; Tversky and Kahneman, 1974; Camerer et al.,

2003; Pu et al., 2003). Eliciting preferences might be costly, too; costs can be cognitive (hours

of human effort in answering questionnaires), computational (calculating a value of certain

alternative might involve solving complicated optimization problems or running simulations),

financial (hiring a team of experts to analyze potential business strategies), and others.
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Furthermore, from the AI perspective, preference elicitation presents a “bottleneck” for de-

signing automated decision aids ranging from critical financial, medical, and logistics domains

to low-stakes processes, such as product recommendation or automated software configura-

tion. For making optimal decisions, we need to know both the decision dynamics and outcome

utilities. In many situations, the dynamics is known (representation, elicitation and learning

of complex probability models is a well-researched area of AI). However, user preferences are

often unknown, and, furthermore, they vary considerably from user to user (while the system

dynamics is often fixed for all users).

When costs of elicitation are taken in to account, it becomes clear that decisions might

have to be made with partial preference information, if elicitation costs start to exceed the

value of potential improvement of decisions. Viewing utility elicitation as an integral part of

the decision process is a promising paradigm for tackling the preference elicitation problem.

2.2.2 Decisions with partial preference information

If the utility function is not fully known and further elicitation not possible, what criteria

should be used for making good decisions with available information? It turns out that cri-

teria proposed for dealing with state uncertainty in classical decision theory (such as maximum

expected utility, minimax regret, maximin) can be applied to situations where utility func-

tions themselves are uncertain. The analogy extends to both common representations of utility

function uncertainty: Bayesian, where we can keep track of the probability distribution over

possible utility functions, and strict uncertainty, defined by the set of feasible utility functions.

2.2.2.1 Strict uncertainty

Under strict uncertainty, knowledge about a user’s utility function is characterized by the feasi-

ble utility set U . This set is updated (reduced) when relevant preference information is received

during an elicitation process. The following is a non-exhaustive list of decision criteria that

could be used for making decisions with partial utility information under strict uncertainty.
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The set of outcomes is X , and the goal is to choose the best alternative x∗ when the set of

feasible utility functions is U .

Maximin return Without distributional information about the set of possible utility functions

U , it might seem reasonable to select an outcome whose worst-case return is highest:

x∗ = arg max
x∈X

min
u∈U

u(x). (2.23)

Maximin decision is sometimes called robust because it provides an ex post security guarantee.

Maximin was proposed by Wald (1950), and mentioned by Salo and Hämäläinen (2004) for

the case of uncertain utilities.

Hurwicz’s optimism-pessimism index Maximin return is a pessimistic criterion, because

the decision maker prepares for the worst realization of the utility function. Maximax return

criterion is the optimistic counterpart to maximin. Supposing that maximin and maximax are

too extreme, Hurwicz proposed to use a weighted combination of the minimum and maximum

possible values (French, 1986). For the case of strict uncertainty over utility functions, this

criterion would choose

x∗ = arg max
x∈X

[
αmin
u∈U

u(x) + (1− α) max
u∈U

u(x)

]
, (2.24)

where α is the optimism-pessimism index of the decision maker. Hurwicz’s optimism-pessimism

criterion generalizes minimax (α = 1) and maximax (α = 0), as well as the central values cri-

terion favored by Salo and Hämäläinen (2001). The central values rule prescribes an outcome

whose average of its minimum and maximum possible values is highest. This is equivalent to

setting the optimism-pessimism index α to 0.5.

Minimax regret Minimax regret criterion was first described by Savage (1951) in the con-

text of uncertainty over world states, and advocated by Boutilier et al. (2001) and Salo and

Hämäläinen (2001) for robust decision making with uncertain utility functions. The main idea
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is to compare decisions for each state of uncertainty. The (pairwise) regret of choosing out-

come x instead of y isR(x, y;U) = maxu∈U u(y)−u(x). The maximum regret of choosing x is

MR(x;U) = maxu∈U maxy∈X [u(y)− u(x)]. The minimax regret optimal decision minimizes

the worst-case loss with respect to possible realizations of the utility function:

x∗ = argmin
x∈X

MR(x;U) = argmin
x∈X

max
u∈U

max
y∈X

[u(y)− u(x)]. (2.25)

Various applications of decision making with minimax regret criterion have been researched

by Boutilier et al. (2001); Boutilier, Das, Kephart, Tesauro, and Walsh (2003a); Boutilier

et al. (2003b); Wang and Boutilier (2003); Boutilier et al. (2004c, 2005); Patrascu, Boutilier,

Das, Kephart, Tesauro, and Walsh (2005); Braziunas and Boutilier (2007, 2010); Regan and

Boutilier (2009).

The minimax criterion does not satisfy the principle of independence of irrelevant alterna-

tives. According to this principle, the ranking between two alternatives should be independent

of other available alternatives (for example, the violation of this principle could result in a

situation where x � y if option z is available, and y � x otherwise). We should note, how-

ever, that the principle of independence of irrelevant alternatives is not universally accepted as

a prerequisite for rational decision making. However, it is known that no decision criterion

for strict-uncertainty situations (including the ones discussed in this section) can satisfy all the

eight principles of consistent decision making, as stated by French (1986).1

Principle of Insufficient Reason This criterion dates back to Pierre Laplace and Jacob

Bernoulli, who maintained that complete lack of knowledge about the likelihood of world states

should be equivalent to all states having equal probability. Therefore, following this principle

1The eight axioms of consistent choice are: complete ranking, independence of labeling, independence of
value scale, strong domination, independence of irrelevant alternatives, independence of addition of constant to a
column (to a choice table), independence of row permutation, and independence of column duplication (French,
1986). The last two axioms encapsulate the concept of strict uncertainty and are violated by the Bayesian decision
criteria.
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of insufficient reason, an optimal decision maximizes the mean value of possible outcomes:

x∗ = arg max
x∈X

Eu∼π [u(x)], (2.26)

where π is the uniform distribution overU . This criterion is mentioned by Salo and Hämäläinen

(2001) as the central weights decision rule, and is implicitly employed by Iyengar et al. (2001);

Ghosh and Kalagnanam (2003); Toubia et al. (2004), where uncertainty over additive utility

functions is characterized by linear constraints on attribute weights. The representative utility

function corresponds to the “center” of the weight polytope. Such center could be its actual

mass center (i.e., the mean under uniform distribution), or some approximation thereof — a

point that minimizes maximal distance to constraint hyperplanes, the center of a bounding

ellipsoid, or the average of uniformly sampled points from inside the region.

Acceptability index Finally, there are methods that recommend choosing an alternative based

on the set size of supporting utility functions. Lahdelma, Hokkanen, and Salminen (1998)

introduce stochastic multiobjective acceptability analysis (SMAA), which applies to settings

where uncertainty over additive utility functions can be described by linear constraints on the

n−1 dimensional weight simplexW . Each alternative is associated with a region ofW in which

it is optimal. Alternatives are ranked according to acceptability index, which is the normalized

volume of the weight region in which it is optimal. An alternative with the highest acceptability

index is in some sense most likely to be optimal. Like the minimax regret criterion, the accept-

ability index criterion does not satisfy the principle of independence of irrelevant alternatives.

Various criteria for decision making under strict uncertainty can be grouped into categories

based on their general properties. Maximax, maximin, and central values (i.e., optimism-

pessimism index) are based on extreme possible values of outcomes. Center-based criteria

pick a representative point in the space of feasible utilities. Finally, minimax regret is qualita-

tively different from the other criteria because it considers pairwise value differences between

outcomes.
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Unfortunately, different decision rules might prescribe different alternatives. The choice of

a decision rule under strict uncertainty should be carefully considered by the decision maker

before the elicitation process. French (1986) provides an extensive discussion and critique of

various decision criteria under strict uncertainty.

2.2.2.2 Bayesian uncertainty

A true Bayesian would likely reject the very notion of strict uncertainty. An optimal decision

is simply the one that maximizes expected value, where expectation is taken with respect to a

prior probability distribution π over the set of feasible utilities U :1

x∗ = arg max
x∈X

Eu∼π[u(x)] = arg max
x∈X

EU(x, π), (2.27)

where EU(x, π) is the expected utility of outcome x when π is the probability distribution

over utilities (π is also referred to as the elicitor’s belief state about a subject’s preferences). In

the case of additional uncertainty over world states, the goal is to maximize expected expected

utility (Boutilier, 2003).

While most recent work on decision making using distributions over utility functions has

been done within the AI community (Chajewska and Koller, 2000; Chajewska et al., 2000;

Boutilier, 2002; Braziunas and Boutilier, 2005), the origins of this approach can be traced

back to much earlier research in game theory and decision theory. Cyert and de Groot (1979)

and de Groot (1983) propose the concept of adaptive utility, where a decision maker does

not fully know her own utility function until a decision is made. Uncertainty is quantified

as a probability distribution over utility function parameters. The distribution is updated by

comparing expected utility of an outcome versus its actual utility, which becomes known after

the decision is made. Weber (1987) also discusses using expectations over utility functions as

a possible criterion for decision making with incomplete preference information. In a related

context, probabilistic modeling of possible payoff functions provides the foundation to the

1With a prior over utilities, the same decision also minimizes expected regret.
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well-established field of Bayesian games (Harsanyi, 1967, 1968).

Boutilier (2003) investigates the conditions under which it is reasonable to model uncer-

tainty over functions measured on the interval scale. By appealing to the foundational axioms

of utility theory, it can be shown that the functions are required to be extremum equivalent, i.e.,

they have to share the same best and worst outcomes.

An important issue in the Bayesian approach to modeling uncertainty over utility functions

is the choice of prior probability distributions. Ideally, the probability model would be closed

under updates (otherwise, it needs to be refit after each response) and flexible enough to model

arbitrary prior beliefs. Mixtures of Gaussians (Chajewska et al., 2000), mixtures of truncated

Gaussians (Boutilier, 2002), mixtures of uniforms (Boutilier, 2002; Wang and Boutilier, 2003;

Braziunas and Boutilier, 2005), and Beta distributions Abbas (2004) are among possibilities

proposed in the literature. Priors can also be learned from data — Chajewska et al. (1998)

describe a way to cluster utility functions using a database of utilities from a medical domain.

2.2.3 Query selection criteria

A central issue in preference elicitation is the problem of which query to ask at each stage of

the process. The value of a query is generally determined by combining the values of possible

situations resulting from user responses. As in decision making with incomplete information,

query selection is also driven by the ultimate goals of the decision support system. Query se-

lection criteria include fastest reduction of minimax regret or uncertainty, or achieving optimal

tradeoff between elicitation costs and predicted improvement in decision quality.

2.2.3.1 Max regret reduction

The minimax regret decision criterion provides bounds on the quality of the decision made

under strict uncertainty. When the potential regret associated with each decision is too high,

more utility information needs to be elicited. A decision support system can query the user
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until the minimax regret reaches some acceptable level, elicitation costs become too high, or

some other termination criterion is met.

Each possible response to a utility query results in a new decision situation with a new level

of minimax regret (the level of regret cannot increase with more information). The problem

is to estimate the value of a query based on the value of possible responses. For example,

one could select the query with the best worst-case response, or the query with the maximum

average or expected improvement (Wang and Boutilier, 2003; Braziunas and Boutilier, 2010).

Minimax regret reduction queries are also used in the autonomic computing scenario (Boutilier

et al., 2003a; Patrascu et al., 2005), eliciting values of non-price features in combinatorial

auctions (Boutilier et al., 2004c), and optimizing constrained configurations (Boutilier et al.,

2003b, 2005). A more detailed description of these methods is postponed till Section 2.3.6.2.

2.2.3.2 Uncertainty reduction

There is a variety of methods from diverse research areas, such as conjoint analysis and IS-

MAUT (see Sections 2.3.3 and 2.3.4), whose central idea is to choose queries that reduce the

uncertainty over utility functions as much as possible. The set of possible utility functions is

commonly represented as a convex polytope in the space of utility function parameters. Each

query bisects the polytope by adding a linear constraint. Since the responses are not known

beforehand, various heuristics are used to choose the next query. Such heuristics consider the

size parity of volumes (Iyengar et al., 2001), as well as their shape (Ghosh and Kalagnanam,

2003; Toubia et al., 2004).

Abbas (2004) proposes an algorithm for query selection in situations where uncertainty

over unidimensional utility functions is quantified probabilistically. At each stage, a myopi-

cally optimal query provides the largest reduction in the entropy of the joint distribution over

utility values. Holloway and White (2003) consider sequentially optimal querying policies for

a subclass of problems with additive utility functions and small sets of alternatives. The process

is modeled as a special POMDP (see Section 2.3.3 below for a more detailed description).
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While such methods strive to minimize the number of queries, they fail to consider the

tradeoff between elicitation costs and improvement in decision quality. This is the topic of the

next section.

2.2.3.3 Expected value of information

If uncertainty over utilities is quantified probabilistically, the value of a query can be computed

by considering the values of updated belief states (one for each possible response), and weight-

ing those values by the probability of corresponding responses. If a sequence of queries can

be asked, finding the best elicitation policy is a sequential decision process, providing an opti-

mal tradeoff between query costs (the burden of elicitation) and the value of potentially better

decisions due to additional information. However, such a policy is very difficult to compute;

therefore, we first describe a myopic approach to choosing the next query.

Myopic EVOI Because of computational complexity of determining full sequential value

of a query, it is common to use myopic expected value of information (EVOI) to determine

appropriate queries (Chajewska et al., 2000). To reduce uncertainty about utility functions, the

decision support system can ask questions about the user’s preferences. We assume a finite

set of available queries Q, and, for each query q ∈ Q — a set of possible user responses Rq.

Responses to queries depend on the true user utility function u, but might be noisy. A general

model that fits many realistic scenarios is a probabilistic response model Pr(rq|q, u), providing

the probability of response rq to the query q when the utility function is u. Pr(rq|q, π) will

denote the probability of response rq with respect to the density π over utility functions:

Pr(rq|q, π) = Eu∼π[(Pr(rq|q, u)]. (2.28)

Elicitation of preferences takes time, imposes cognitive burden on users, and might involve

considerable computational and financial expense. Such factors can be modeled by assigning

each query q a query cost cq.1 In a Bayesian formulation of the elicitation process, expected

1More generally, costs could depend on the true utility function, or be associated with responses.



CHAPTER 2. PREFERENCE ELICITATION: AN OVERVIEW 52

gains in decision quality should outweigh elicitation costs.

Let’s recall that EU(x, π) is the expected utility of outcome x when π is the probability

distribution over utilities (see Eq. 2.27). Let MEU(π) be the maximum expected utility of

belief state π:

MEU(π) = max
x∈X

EU(x, π). (2.29)

A response r to a query q provides information about the true utility function and changes our

current beliefs from π to πr according to the Bayes’ rule:

πr(u) = π(u|r) =
Pr(r|u)π(u)

Pr(r|π)
. (2.30)

Thus, after response r, the maximum expected utility is MEU(πr). To calculate the value of

a query, the MEUs of its possible responses should be weighed according to their likelihood.

The expected posterior utility of the query q is:

EPU(q, π) =
∑
r∈Rq

Pr(r|q, π) MEU(πr). (2.31)

The expected value of information of the query q is its expected posterior utility minus its

current maximum expected utility:

EV OI(q, π) = EPU(q, π)−MEU(π). (2.32)

EVOI of the query q denotes the gain in expected value of the ultimate decision. A my-

opically optimal query strategy would always select a query whose EVOI is greatest, after

accounting for query costs. A sequentially optimal strategy would consider the value of future

queries when computing the EVOI of the current query. Even though some query might be

very costly in short term, it might be able to direct the elicitation process to good regions (in

terms of decision quality) of the utility space which might otherwise remain unexplored by

the myopic EVOI strategy. The myopic EVOI approach is more popular in practice (used by

Chajewska and Koller (2000); Braziunas and Boutilier (2005)) because computational require-

ments of sequential EVOI are often prohibitive.
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Sequential EVOI An obvious way to minimize the shortcomings of myopic querying strate-

gies is to perform a multistage lookahead. Unfortunately, such multistage search would have

to be computed online (during the execution of the policy), which might seriously limit its

benefits.

Another approach is to compute a sequentially optimal policy offline. Boutilier (2002)

introduces the concept of preference elicitation as a POMDP that takes into account the value

of future questions when determining the value of the current question. As before, we assume

a system that makes decisions on behalf of a user; such a system has a fixed set of choices

(actions, recommendations) whose effects are generally known precisely or can be modeled

stochastically. The system interacts with a user in a sequential way; at each step it either asks

a question, or determines that it has enough information about a user’s utility function to make

a decision. As each query has associated costs, the model allows the system to construct an

optimal interaction policy which takes into account the trade-off between interaction costs and

the value of provided information. The approach is discussed in more detail in Section 2.3.6.1.

2.3 Related work on preference elicitation

The last part of the chapter surveys research fields (both historical and from outside computer

science) where preference elicitation plays a central role: imprecisely specified multiattribute

utility theory (ISMAUT), its extensions to engineering design and configuration problems,

conjoint analysis in marketing, and analytical hierarchy process (AHP) in decision analysis.

ISMAUT is one of the earlier attempts to consider decision making under partial preference

information in classical decision analysis. Conjoint analysis and AHP methods were developed

largely in isolation in the fields of marketing research and decision analysis; however, these

methods also attempt to solve preference elicitation issues of general interest. We finish by

providing an overview of some recent work in preference elicitation in AI.
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2.3.1 ISMAUT

One of the earlier attempts to consider decision making under partial preference information

is the work on imprecisely specified multiattribute utility theory, or ISMAUT, by White et al.

(1983, 1984); Anandalingam and White (1993). A similar framework was proposed before

by Fishburn (1964) and Sarin (1977). Related research by, e.g., Kirkwood and Sarin (1985);

Hazen (1986); Weber (1987), deals with similar issues, even though it is not customarily called

ISMAUT.

ISMAUT applies to situations in which the utility function can be written in a normalized

additive form, i.e., as a sum of weighted local value functions for each attribute. The decision

maker has to choose from a finite set of multiattribute alternatives. The goal of ISMAUT is to

restrict the set of alternatives to those that are not dominated by any other alternative, based

on the prior information on local value functions, weights (scaling factors), and comparisons

between pairs of alternatives. If the reduced alternative set is too big for the decision maker to

make a choice, one should assess local value functions or weights more accurately, reduce the

set of nondominated alternatives, and continue the process as long as is necessary for optimal

alternative selection. An obvious drawback of this scheme is the lack of an intelligent query

selection strategy to drive the elicitation process. In the following section, we discuss the

research that considers querying strategies in ISMAUT-like elicitation settings.

Let A be the set of available multiattribute alternatives. Each alternative x ∈ A is a point

in an n-dimensional consequence space: x = (x1, x2, . . . , xn). The preference relation over A

is representable by an additive utility function:

u(x) =
n∑
i=1

wi vi(xi) = w · v(x),

where w is a vector of weights, and v(x) is a vector of local value function values of some

multiattribute alternative x.

The model can incorporate three types of prior information (or responses to utility queries):

comparison of attribute weights wi, information about local value functions vi, expressed by
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sets of linear inequalities, and pairwise preference statements about alternatives in the set A.

In particular,

1) Knowledge about relative importance of the tradeoff weights (“Color is more impor-

tant than screen size”) or bounds on their values (“This attribute’s weight is between

0.5 and 1”) 1 allows a decision analyst to define a feasible subset W ⊆ {w ∈ Rn :

wi ≥ 0,
∑

iw1 = 1} of all possible weights via linear constraints.

2) Similar to statements about weights, ISMAUT incorporates information about individual

local value functions by means of linear constraints. If the third attribute is a computer’s

speed, and the user prefers faster computers, ceteris paribus, then v3(fast) ≥ v3(slow).

The user might also be able to provide bounds for local values of specific attribute levels

(e.g., v3(fast) ∈ [0.3, 0.7]). Such linear constraints define the sets V1, . . . , Vn of possible

local value functions.

3) Finally, even if the user is unable to select the best alternative right away, she might

be able to compare some pairs of alternatives. Let J be the set of such comparisons:

J = {(x,y) ∈ A×A, x � y}. The set of comparisons J can be used to impose further

restrictions on the weight space, because (x,y) ∈ J implies w · v(x) ≥ w · v(y).

All this prior information defines the set U of feasible utility functions (viz., weights and

local value functions). More precisely, the tuple 〈w, v1, . . . , vn〉 ∈ U if and only if

w ∈ W,

vi ∈ Vi, for all i = 1, . . . , n,

w · [v(x)− v(y)] ≥ 0, for all (x,y) ∈ J.

A decision analyst can use the set of feasible utilities U to eliminate dominated alternatives.

First, let R(U) ⊆ A × A be the binary relation of known (inferred) pairwise relationships

1Although many authors talk about the “importance” of attributes, we should be aware that weights are nothing
more than scaling factors. The statements about weights are nonetheless meaningful: wi ≥ wj means that
outcome (x>i ,x

⊥
{i}C ) is preferred to (x>j ,x

⊥
{j}C ), and wi ∈ [0.5, 1] means that u(x>i ,x

⊥
{i}C ) ∈ [0.5, 1].
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between outcomes:

(x,y) ∈ R(U) ⇐⇒ w · [v(x)− v(y)] ≥ 0, for all 〈w, v1, . . . , vn〉 ∈ U.

This means that the relationship x � y is known if and only if (x,y) ∈ R(U). The set of prior

stated pairwise preferences J is a subset of R(U).

The set of nondominated alternatives ND(U) can be computed using the relation R(U):

x is nondominated if there is no alternative y such that (y,x) ∈ R(U). Without prior in-

formation, U contains all possible weights and value functions, and ND(U) is equal to the

Pareto-optimal set of alternatives. ND(U) is important because the most preferred alternative

has to be in it. The goal of ISMAUT is to reduce the set of nondominated alternatives until the

user can select the optimal one. More information about the possible local value functions and

weights reduces the size of set U, increases the binary relation R(U), and reduces the size of

ND(U):

U ⊆ U′ =⇒ R(U′) ⊆ R(U) ∧ND(U) ⊆ ND(U′).

The set ND(U) can be computed from R(U) in polynomial time in the size of the al-

ternative set A, because for each alternative, one needs to check that no other alternative is

preferred. The central computational task is therefore to compute R(U) from U. Recall that

(x,y) ∈ R(U) if and only if w · [v(x)−v(y)] ≥ 0, for all 〈w, v1, . . . , vn〉 ∈ U. This amounts

to verifying that

min
〈w,v1,...,vn〉∈U

w · [v(x)− v(y)] ≥ 0. (2.33)

When both w and v are not fully known, this leads to a quadratic program. If only the

weights or the value functions are uncertain, the problem is much simpler, and can be solved

by a linear program. Appendix A provides more details and references.

Hazen (1986) and Weber (1987) point out that the set of nondominated alternatives is not

the same as the set of potentially optimal alternatives, which is a subset of ND(U). It is

possible that an alternative is not dominated by any other alternative, but is dominated by

a collection of alternatives (Weber (1987) calls this mixed dominance). Or, alternatively, a
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potentially optimal alternative always has a feasible witness utility function for which it is an

optimal alternative. When local value functions are known, the witness weight vector can be

found by solving a linear program.

2.3.2 Engineering design and configuration problems

One field in which applications and extensions of ISMAUT have been proposed is engineering

design. Design is a multidisciplinary area with no precise definition. Generally, any problem of

designing a complex system that has to comply to some performance requirements and satisfy

operational constraints can be regarded as an engineering design problem. Examples include

communication networks, computer systems, bridges, etc. Some areas within engineering de-

sign that have tight connections to AI are AI in design (AID), knowledge-based design systems

(KBDS), and intelligent computer-aided design (ICAD) (Brown and Birmingham, 1997). As

we shall see, configuration design (Wielinga and Schreiber, 1997) is a particularly relevant for-

malization of the problem with regard to preference elicitation. A recent report by the Board

on Manufacturing and Engineering Design (2001) stresses the importance of the decision-

theoretic approach in engineering design.

The paper of Sykes and White (1991) on multiobjective intelligent computer-aided design

(MICAD) extends the ideas of ISMAUT to the problem of configuration design. The design

process is viewed as a combination of the progressively acquired preferential component and an

a priori operational component. MICAD thus combines iterative capture of user preferences

with the search in the constrained space of feasible designs. Preference elicitation can be

directed toward promising (and feasible) regions of the design space, thus avoiding the cost of

wasted elicitation effort. On the other hand, the search for optimal designs can be substantially

facilitated by preference information.

Intuitively, a configuration problem is that of “configuring” a system. A decision to be taken

consists of a number of components, or aspects, which interact in complex ways to produce

an outcome. A typical example is configuring a computer system from a set of components
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— choosing a processor, compatible memory, peripherals, etc. Possible configurations are

restricted by hard feasibility constraints. The optimal configuration depends on user prefer-

ences; however, those preferences are expressed over features or attributes of configurations

(or designs). For example, a user might want a “reliable home computer”, which is a point in

the feature space (or performance space), rather than configuration space. A mapping from

configuration space to feature space induces indirect preferences over configurations.

Let T = T1 × . . . × Tm be a multiattribute configuration space, where each Ti is a set

of components to choose from. As before, the outcome, or feature, space will be denoted as

X. Components represent controllable aspects of a design problem, whereas configuration

features allow for a direct expression of user preferences. Feasible configurations TF ⊆ T

form a subset of the configuration space; they could be specified by a set of rules, logical for-

mulas, or using constraint satisfaction problem (CSP) formulations. A performance function1

f : T 7→ X provides a mapping from configuration space to feature space. The problem is

complicated by the fact that this function f might not have any useful mathematical properties

(such as continuity, monotonicity or invertibility), and might not be expressed in closed form.

Determination of f(t), t ∈ T might also be costly and require expert analysis or simulation.

The problem of engineering design can thus be summarized follows: given a set of compo-

nents and features, a set of operational constraints on configurations, a performance function,

and a preference relation over the outcome space, find an optimal feasible configuration. This

general problem is addressed by Sykes and White (1991); D’Ambrosio and Birmingham (1995)

using ISMAUT, and by Boutilier et al. (1997) using CP-nets.

Sykes and White (1991) investigate direct application of ISMAUT ideas to the design pro-

cess. It is assumed that local value functions are known, so only weights are uncertain. In-

formation about weights can be queried from the user in two ways, already described above:

(1) the user can provide direct information about weights, expressed as linear constraints; (2)

1Boutilier, Brafman, Geib, and Poole (1997) call the performance function a causal model, because it is
expressed by a set of logical rules.



CHAPTER 2. PREFERENCE ELICITATION: AN OVERVIEW 59

the user can compare pairs of designs to induce linear inequalities in the weight space (this

requires solving Eq. 2.33). Preference elicitation can occur at any time during an iterative de-

sign process. MICAD is presented as a general framework for interactive preference elicitation

and search in the space of designs. It is assumed that the search proceeds in stages, at which

a finite set of designs is available for the user to evaluate. Two crucial issues are not directly

addressed: how to select a set of designs (from potentially exponential number of possibilities)

at each stage, and what query selection strategy to follow when eliciting user preferences.

D’Ambrosio and Birmingham (1995) tackle the first issue. They formulate the design en-

gineering problem as a constrained optimization problem. The objective function is an in-

complete value function created by pairwise ranking a random sample of design alternatives.

Operational constraints are modeled as a CSP. Therefore, CSP solution techniques, such as

constraint network decomposition and constraint propagation, can be harnessed to facilitate a

branch-and-bound search for optimal designs.

2.3.3 Extensions of ISMAUT

Classical ISMAUT is mostly concerned with narrowing the set of alternatives to a manageable

size using partial preference information. The following papers address an important issue of

how to select queries in a sequential elicitation process. Like in ISMAUT, the additive utility

function over attributes is assumed.

The Q-Eval algorithm of Iyengar et al. (2001) asks the user to compare pairs of selected

alternatives, and uses the responses to refine the preference model. The local value functions

are specified precisely, so utility function uncertainty is represented by linear constraints on

the weight space. Given a set of alternatives, the authors address the issue of which pair to

present to the user for ranking in a sequential elicitation process. Each response to the query

“Is x̂ preferred to x?” adds a linear constraint which reduces the region of feasible weights

W . Since a response is not known beforehand, the authors advocate a heuristic of choosing the

query that would come closest to bisecting the space of feasible weights. The rationale for this
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querying strategy is to shrink the space of possible weights as quickly as possible.

The implementation of Q-Eval employs a number of approximations to ensure practical

online performance. First, the number of alternative pairs considered is pruned based on the

normal distance of corresponding hyperplanes to the “center” of the region W . Intuitively,

hyperplanes close to the center are good candidates for bisecting the region W equally. The

notion of center used throughout the paper is that of prime analytic center, which is the point

that maximizes the sum of log distances to the irredundant hyperplanes defining the region. In

case a decision has to be made with uncertain information, the center serves as a representative

weight vector. Queries that were not pruned in the previous step are then evaluated based

on the volumes of the resulting polytopes (the best query leads to the most equal partition of

the weight space). The volumes are approximated by the size of the tightest axis-orthogonal

bounding rectangle.

Ghosh and Kalagnanam (2003) consider the same problem and propose to use sampling

for determining the center of the weight region W . In particular, they use a hit-and-run sam-

pling technique that employs a Markovian random walk defined on the set W with a uniform

stationary distribution. The advocated querying strategy is to ask a query whose corresponding

hyperplane is orthogonal to the longest line segment contained in W .

The two query selection methods described above try to minimize the number of queries by

shrinking the region of possible weights as fast as possible. However, they do so myopically,

without considering the value of a sequence of queries. Holloway and White (2003) present a

partially observable Markov decision process (POMDP) model for sequentially optimal elic-

itation in an ISMAUT-like setting, where uncertainty about utility functions is specified by

linear constraints on weight vectors.

The state space in this POMDP model is the (uncountable) collection of all subsets of

tradeoff weights {w ≥ 0 :
∑
wi = 1}. Intuitively, a system is in state W , if W is the largest

region of the weight space constrained by previous elicitation responses. Actions are binary

queries asking to compare pairs of alternatives, and observations are yes/no answers to such
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queries. It is assumed that there is no noise in user responses. The observation function is

the probability of getting a response r to the query q when the true tradeoff weight vector lies

in the set W ; a uniform probability distribution over the weight space is assumed, although

more general probability models could be accommodated. The process moves from one state

to another as the feasible weight region shrinks due to linear constraints imposed by responses

to queries.

To define the cost structure, the authors use a notion of the solution partition, which divides

the set of all weights into convex regions where one alternative dominates all others. Formally,

if A is the set of alternatives, a solution partition is {Wa : a ∈ A}, where

Wa = {w : w · v(xa) ≥ w · v(xa′) ∀a′ ∈ A}. (2.34)

Several elicitation goals can be encoded using the cost model. Let T be a maximum number

of queries that can be asked (thus, we consider a finite-horizon POMDP). For a given weight

vector set W , c(W, q) is the cost of asking the query q, and c̄(W ) is the terminal cost of ending

up with the set W after all questions have been asked. If the goal is to ask as few queries as

possible to determine an optimal alternative, then one can set c̄(W ) = 0, c(W, q) = 0 if there

is a ∈ A such that W ⊆ Wa, and c(W, q) = 1 otherwise. The optimal policy of this POMDP

will ask the fewest queries possible until it finds the smallest t ≤ T such that W (t) ⊆ Wa

for some a ∈ A. One can similarly define a simple cost function for minimizing the expected

uncertainty of knowing the problem’s solution after T questions.

Since the POMDP described above is hard to solve in the most general form, the authors

concentrate on the case in which restrictions on the cost function guarantee a finite, piecewise

linear, representation of the POMDP value function. This is possible if the cost function de-

pends on W only through a finite probability distribution pW (·) over alternatives. For each

a ∈ A, pW (a) is the probability that alternative a is optimal, given that the true weight vector

is in W . Such cost functions are too restrictive for POMDPs that model the optimal tradeoff

between elicitation costs and expected improvement in decision quality; however, they can be
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used to achieve the two goals mentioned in the previous paragraph.1

Holloway and White (2003) do not perform empirical validation of the approach or provide

a suitable POMDP solution algorithm; the authors also assume perfect responses to queries.

Nevertheless, it is the first attempt to describe a model for sequentially optimal query selection

in ISMAUT problems.

2.3.4 Conjoint analysis

Since the original paper by Green and Rao (1971), conjoint analysis has become a major area in

marketing research.2 Conjoint analysis is a set of techniques for measuring consumer tradeoffs

among multiattribute products and services. Despite differences in terminology and methodol-

ogy, conjoint analysis and multiattribute decision analysis (in particular, ISMAUT) deal with

similar issues in preference elicitation and modeling.

The goal of conjoint analysis is to decompose consumer preferences over multiattribute

products (or profiles) into component preferences over attributes in order to predict aggregate

consumer behavior, explain preferences for current products, visualize market segmentation,

and help design new products. Thus, the emphasis is generally on predictive and descriptive,

rather than prescriptive aspects of consumer behavior.

Usually, an additive utility function is assumed — the total value of a product is the sum of

partial contributions (partworths) of individual attributes (features). Formally, let yj = u(xj)

be a specified rating of the product xj . A general conjoint analysis model is

yj =
∑
i

θi z
j
i , (2.35)

where zji are input variables, yj is a dependent output variable, and θi are parameters to be

estimated. Input variables zji depend on the attributes of the product xj:

1For example, the problem of minimizing the number of queries can be encoded by setting c̄(pW ) = 0,
c(pW , q) = 0 if there exists a ∈ A such that pW (a) = 1, and c(pW , q) = 1 otherwise.

2Green and Srinivasan (1978, 1990) provide key historical surveys of conjoint analysis.
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• For continuous attributes whose value is monotonically increasing, zi = xi. If all

attributes are like that, then the model reduces to the familiar linear value function

u(x) =
∑

iwi xi, and parameters θi can be viewed as weights wi.

• For continuous attributes whose local value functions are substantially nonlinear, several

zi variables can be used for approximation. In a case of quadratic function for attribute

xi, two z variables are introduced: one equal to xi, and the other equal to x2
i . Such local

value models are quite common in conjoint analysis. One example is the ideal-point

model, where local preference increases quadratically until some ideal-point level, and

decreases after that.

• For discrete binary attributes with two levels x>i and x⊥i , zi = 1 if Xi = x>i , and zi = 0

if Xi = x⊥i . Then an estimated parameter θi can be thought of as a local value of the best

level of xi.

• Discrete attributes with K levels are converted into K − 1 binary “dummy” attributes.

Constraints on indicator variables zi are added to ensure consistency of the 1-of-K rep-

resentation.

Given preference information about whole products (such as ordinal or cardinal product

ranking, comparison, or preferred choice from a set of products), some form of regression is

used to find parameters that are most consistent with specified preferences, which are usually

aggregate. For example, a common type of application is to elicit preferences over full profiles

using a rating or ranking scale, and then estimate attribute partworths by least-squares regres-

sion. The underlying assumption is that ranking or rating full products is easier than providing

attribute partworths, as long as the number of attributes is small.

Many aspects of preference elicitation considered in this thesis have their equivalents in

conjoint analysis, too. Approaches are differentiated according to data collection formats (i.e.,

“query types”), question design (“query selection”), and parameter estimation procedures (“de-

cision making with incomplete information”). The most common data collection format is full
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profile evaluation, where a user is asked to order all products (stimuli) in a given set, or provide

a metric rating of each stimulus. Of course, the user’s burden grows dramatically with the size

of stimulus set. Some methods therefore employ partial profile evaluations. Choice-based con-

joint analysis (CBC) is a popular compromise technique, where instead of ranking all profiles,

a user is asked to choose the most preferred from a given a set. Metric paired-comparison for-

mat asks to consider only pairs of profiles, but expects quantitative answers regarding relative

preference.1

Until recently, most applications of conjoint analysis either presented the same questions

to all respondents, blocked them across sets of respondents, chose randomly, or adapted them

based on responses from prior respondents. Adaptive question design for individual respon-

dents in the manner of ISMAUT was first considered by Toubia et al. (2003, 2004) in met-

ric paired-comparison and CBC settings. This new approach, termed the polyhedral method,

works by iteratively constraining the polyhedron of feasible subutility (partworth) values. The

attributes are discrete and binary (multilevel attributes can be represented using dummy vari-

ables), so each product is represented by a point in the space of attribute partworths. In CBC,

binary comparison questions result in a separating hyperplane that cuts the polyhedron of fea-

sible subutilities. More generally, a respondent is presented with a set of products, and asked

to choose one of them. A choice set of size k defines k(k−1)/2 possible hyperplanes; for each

of k choices available, the k − 1 new hyperplanes induced by that choice determine the new

polyhedron.

In polyhedral methods, the goal is to reduce the size of uncertainty polyhedron as fast as

possible. Questions are designed to partition the polyhedron into approximately equal parts;

in addition, shape heuristics are used to favor cuts that are perpendicular to long axes. Since

the problem is computationally hard, many approximations similar to Q-Eval (Iyengar et al.,

2001) are employed. The polyhedron’s volume is approximated by a bounding ellipsoid, and its

1In practice, a user is usually provided with a set of qualitative choices specifying by how much product x is
preferable to product y (e.g., “I like x much more than y”, “I like x a little more than y”, “I like x as much as y”,
etc.); these choices are then converted to a quantitative scale.
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center by the analytic center. Then, k points at which k/2 longest axes intersect the polyhedron

are used to select k profiles for the next choice-based query. This technique is extended to

metric paired-comparison queries in Toubia et al. (2003).

Conjoint analysis and decision analysis have largely developed in parallel, without much in-

teraction. However, recent emphasis on sequential preference elicitation in both fields presents

opportunities for fertile interaction. Conjoint analysis offers query formats that have been val-

idated in practice, and experimental domains in consumer research. Its limitations include

reliance on full profile queries,1 which work only for products with a few (usually less than

ten) attributes, common assumptions of attribute independence, and lack of well-defined ex-

plicit elicitation optimization criteria.

2.3.5 Analytic hierarchy process

Analytic hierarchy process (AHP) is an alternative method of decision analysis developed by

Saaty (1977, 1980). The main ideas of the AHP method can be explained in comparison to

additive value theory (French, 1986), although the connection between the two approaches

was developed well after the original work on AHP.

The problem is to select the best alternative from the set of D multiattribute alternatives

x1,x2, . . . ,xD under certainty. Each alternative is measured against N attributes: xk =

(xk1, x
k
2, . . . , x

k
N). The value function is represented as a weighted sum of strictly positive local

value functions vi:

v(xk) =
N∑
i=1

wivi(x
k
i ) =

N∑
i=1

wiv
k
i , (2.36)

where vki is the local value of the kth alternative on the ith attribute. The weights and local

value functions are not normalized to [0, 1].

The main difference between AHP and classical decision analysis lies in the elicitation of

weights and local value functions. Instead of direct responses regarding attribute weights and

1There are methods of conjoint analysis that do not employ full product comparisons, but they are less popular
and not as well grounded theoretically from the decision theory perspective.
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local value functions, AHP assumes that a user can instead provide all the entries of the so-

called positive reciprocal matrices. For each attribute a, the entries can be thought of as ratios

of local value functions:

Ra =



1 r12
a . . . r1D

a

1/r12
a 1 . . . r2D

a

...
... . . .

...

1/r1D
a 1/r2D

a . . . 1


=



v1
a/v

1
a v1

a/v
2
a . . . v1

a/v
D
a

v2
a/v

1
a v2

a/v
2
a . . . v2

a/v
D
a

...
... . . .

...

vDa /v
1
a vDa /v

2
a . . . vDa /v

D
a


, (2.37)

where rija is the ratio of local values via and vja. Besides N attribute matrices, an additional

matrix R is elicited to provide information about relative importance of attributes.

R =



w1/w1 w1/w2 . . . w1/wN

w2/w1 w2/w2 . . . w2/wN
...

... . . .
...

wN/w1 wN/w2 . . . wN/wN


. (2.38)

The entries of R can be interpreted as ratios of attribute weights.

Given the entries of the positive reciprocal matrices, AHP derives the weights and local

value functions for the attributes. If the matrix entries were consistent, such a derivation would

amount to solving a simple system of linear equations. In the likely case of inconsistent entries,

the local value functions and weights are estimated using one of several averaging techniques

(eigenvector-based estimation is commonly advocated). The alternatives are ultimately ranked

by the resulting additive value function.

The key issue is eliciting the positive reciprocal matrices Ra. For attribute matrices, the

user is asked to compare pairs of alternatives on each attribute.1 For a pair of alternatives xi

and xj compared on attribute a, the ratio rija is 1, if xi is equally preferred to xj , 3 — weakly

preferred, 5 — strongly preferred, 7 — demonstrably preferred, and 9 — absolutely preferred.

1Ceteris paribus with respect to remaining attribute values should certainly be assumed, although such issues,
and many other, are often skirted in AHP literature.



CHAPTER 2. PREFERENCE ELICITATION: AN OVERVIEW 67

The weight matrix is elicited by a similar process — one attribute can be “equally important”,

“weakly more important”, “strongly more important”, “demonstrably more important”, and

“absolutely more important” than another.

Issues such as elicitation costs, decision making with incomplete information, and query se-

lection criteria are as important in the AHP as in classical decision theory. Salo and Hämäläinen

(1995, 2001, 2004) maintain that decisions should be made with incomplete information if

elicitation costs outweigh potential improvement in decision quality. Preference uncertainty is

described by bounds on value function ratios (i.e., the entries of positive reciprocal matrices).

Several decision criteria are discussed, and “central values” approach (see Section 2.2.2.1) is

favored on the grounds of empirical simulations. Query selection is not addressed.

AHP is a controversial method (see, e.g., the critiques by French (1986); Salo and Hämäläinen

(1997)). While quite popular in practice,1 it is not as well grounded theoretically as classi-

cal decision theory. One problem is that while local value functions are interval scales, the

construction of positive reciprocal matrices assumes that they are ratio scales;2 AHP fails to

provide an axiomatic basis for such a strong assumption. Elicitation of matrix entries is also

problematic, since it is hard to provide an exact semantic meaning to the AHP queries. The

nine-point scale is a source of further controversy. If level 1 of an attribute is absolutely pre-

ferred to level 2, and level 2 is absolutely preferred to level 3, then the ratio of level 1 and level

3 should be 9 × 9 = 81. However, the scale allows only numbers from 1 to 9. Finally, AHP

violates the principle of independence of irrelevant alternatives (i.e., the principle that ranking

between two alternatives should be independent of other available alternatives).

1Among the main reasons for AHP popularity is the relative simplicity of elicitation queries: to obtain a total
ranking of multiattribute alternatives, a user is only asked to provide a qualitative comparison between pairs of
attributes.

2Functions on a ratio scale are unique up to positive scaling.
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2.3.6 Preference elicitation in AI

2.3.6.1 Bayesian approach

If uncertainty about utility functions can be quantified probabilistically, then one can design

preference elicitation strategies that optimally balance the tradeoff between elicitation effort

and the impact of information on the decision quality. Until recently, this approach has been

explored very little. In this section, we take a look at some of the attempts to solve this problem

by AI researchers. In Chapter 4, we describe our own contributions to the Bayesian elicitation

of GAI utilities.

Myopic EVOI Chajewska et al. (2000) were arguably the first to adopt a consistent Bayesian

view of the preference elicitation problem. If the utility function is not fully known, it is

treated as a random variable drawn from the prior distribution (Chajewska and Koller, 2000).

The value of a decision in an uncertain situation is computed by taking an expectation over

all possible utility functions. Furthermore, the value of a query is simply its expected value of

information.

The proposed framework leads to a simple elicitation algorithm. At each step, the query

with the highest EVOI is asked, and the distribution over utilities is updated based on user

responses. The process stops when the expected value of a decision meets some termination

criteria. Because the sequential EVOI (which takes into consideration all possible future ques-

tions and answers) is hard to compute, the value of a query is approximated by the myopic

EVOI (see Eq. 2.32).

In the prenatal diagnosis decision model described in the paper, the outcome space of size

D is discrete and unstructured (flat). Therefore, the space of all utility functions can be repre-

sented by a D-dimensional unit hypercube. A multivariate Gaussian distribution (restricted to

[0,1]) is used to model the prior over utilities. After a binary standard gamble query (“Is utility

of outcome x greater than p?”), the resulting posterior becomes a truncated Gaussian, which

is then approximated by a new multivariate Gaussian distribution. Experimental results on the
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domain with 108 outcomes show that very few queries are needed to reduce the expected utility

loss below a small threshold.

Preference elicitation as a POMDP To overcome the shortcomings of myopic EVOI ap-

proaches, the preference elicitation problem can be modeled as a POMDP (Boutilier, 2002).

The state space of the preference elicitation POMDP is the set of possible utility functions

U ; actions can be either queries about a user’s utility function Q or terminal decisions; ob-

servation space is the set of possible responses to queries R. The dynamics of the system is

simplified by the fact that the state transition function is trivial: the underlying utility func-

tions never change throughout the interaction process; the observation function is the response

model which maintains a probability distribution of a particular response to a given query for a

specific utility function; and, the reward function simply assigns costs to queries and expected

utilities to final decisions.

Solving the preference elicitation POMDP is a difficult task. In realistic situations, the

state space is continuous and multi-dimensional, so standard methods for solving finite-state

POMDPs are no longer applicable. Boutilier (2002) presents a value-iteration based method

that exploits the special structure inherent in the preference elicitation process to deal with

parameterized belief states over the continuous state space; belief states are represented by

truncated Gaussian or uniform mixture models. With standard gamble comparison queries that

“slice” the density vertically (“Is utility of outcome x greater than p?), updated distributions

remain conjugate to the prior. The POMDP is solved by approximating the value function

using asynchronous value iteration.

The preference POMDP can also be solved using policy-based methods. Braziunas and

Boutilier (2004) describe an algorithm BBSLS that performs stochastic local search in the

space of finite state policy controllers. In the case of continuous utility functions, it is possible

to sample a number of states (utility functions) at each step, and calculate the observation and

reward functions for the sampled states. The results for a very small preference elicitation prob-
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lem (Boutilier, 2002) provide the proof-of-concept verification of the policy-based approach.

There is a lot of room for future research in this area as POMDP-based methods so far can only

solve unrealistically small problems.

2.3.6.2 Minimax regret approach

Minimax regret criterion can be used both for making robust decisions under strict uncer-

tainty and for driving an elicitation process. Contrary to the methods in the previous section,

the quality (difference from optimal) of a minimax regret optimal decision can be bounded;

these bounds can be tightened with further elicitation effort. Minimax regret methods have

been applied to several areas of AI, including auctions (Wang and Boutilier, 2003), autonomic

computing (Boutilier et al., 2003a; Patrascu et al., 2005), combinatorial auctions (Boutilier

et al., 2004c), and constrained configuration problems (Boutilier et al., 2003b, 2005). In Chap-

ters 5 and 6, we describe further extensions of minimax regret based approaches to GAI utili-

ties.

Wang and Boutilier (2003) consider a simple problem with a flat outcome space and bi-

nary standard gamble queries. A response to a query results in a new decision situation with

a new level of minimax regret. The (myopic) value of a query is a function of response val-

ues. The authors consider three ways of combining response values: maximin improvement

(select the query with the best worst-case response), average improvement (select the query

with the maximum average improvement), and expected improvement (select the best query

based on improvements weighted by the likelihood of responses). It turns out that the expected

improvement criterion, combining a Bayesian query selection strategy and a robust minimax

regret decision criterion, performs best experimentally and is not subject to stalling — the situ-

ation when no query improves the minimax regret level. Using binary standard gamble queries,

the querying strategy can be optimized analytically.
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Boutilier et al. (2003b) address the problem of choosing the best configuration from the set

of feasible configurations encoded by hard constraints. It is assumed that preferences over con-

figurations can be represented by a GAI utility function; however, this function is imprecisely

specified by bounds on GAI subutility function values. The authors propose the use of mini-

max regret as a suitable decision criterion and investigate several algorithms based on mixed

integer linear programming to compute regret-optimizing solutions efficiently.

Boutilier et al. (2005) concentrate on the utility elicitation aspect and provide an empirical

comparison of minimax regret reduction strategies in GAI utility models, where uncertainty

over utilities is expressed by bounds on local factor values. The objective is to refine utility

uncertainty and reduce minimax regret with as few queries as possible. The queries are bound

queries: the user is asked whether a specific local utility parameter lies above a certain value.

A positive response raises the lower bound, while a negative response lowers the upper bound

of a local subutility value.

The halve largest gap (HLG) elicitation strategy recommends a query at the midpoint of the

bound interval of the GAI factor setting with the largest gap between upper and lower bounds.

HLG uniformly reduces uncertainty over the entire utility space and therefore provides the best

theoretical minimax regret reduction guarantees. It is related to polyhedral methods (with rect-

angular polytopes) in conjoint analysis which attempt to maximally reduce uncertainty with

each query. Another, current solution (CS), strategy, uses heuristics to focus on relevant parts

of the utility space and works better in practice. CS relies on two special outcomes that are di-

rectly involved in calculating the regret level: x∗, the minimax optimal configuration, and xw,

the witness point that maximizes the regret of x∗. The CS strategy considers only local factor

settings that are part of these two special outcomes and asks about the one with the largest gap.

A few other heuristic strategies are also tested in experiments.

The minimax regret criterion can also be applied to a completely different domain of au-

tonomic computing (Boutilier et al., 2003a; Patrascu et al., 2005). To solve the problem of
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optimal resource allocation one needs to know the utility of different levels of resource ap-

plied to the distributed computing elements. However, even a single evaluation of the utility

function is very costly. Patrascu et al. (2005) investigate how to sample a monotonic non-

decreasing utility function with a continuous unidimensional domain using strategies similar

to CS and HLG.
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This chapter is about the decision-theoretic foundations that support local elicitation of GAI

utilities. It is based on the work that first appeared in the paper by Braziunas and Boutilier

(2005).

The first section introduces GAI utility models. The second section deals with semantically

sound representation of local structure in GAI utilities; this representation serves as the primary

model of preferences in the remaining chapters of the thesis. Local structure facilitates not

only representation, but also elicitation of utility parameters. The third section of the chapter

enumerates the set of queries for elicitation of GAI utility parameters that are used in our

elicitation framework (in both Bayesian and strict uncertainty settings). We discuss related

work and summarize our contribution in the concluding section.

3.1 GAI utility model

This section introduces formal definitions of the generalized additive independence and Fish-

burn’s GAI representation theorem (Fishburn, 1967b, 1970). After introducing the key con-

cepts of reference and basic outcomes, we prove the GAI structure lemma, which is then used

to outline the proof of the GAI representation theorem. The concepts and insights gained in this

section will be applied when investigating the GAI local structure in the following sections.

3.1.1 Generalized additive independence

Following the notation introduced in Chapter 2, we assume a set ofN attributesX1, X2, . . . , XN ,

each with finite domains. All the possible instantiations of attribute values define a set of out-
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comes X = X1 × · · · × XN . We also consider a collection of M attribute subsets, or fac-

tors, that cover the set of all attributes: F1 ∪ F2 · · · ∪ FM = {X1, X2, . . . , XN}. A factor

FI = {Xi | i ∈ I} contains the attributes whose indices are in the index set I ⊆ {1, . . . , N}.

The factors (and their associated sets of indices) will be commonly enumerated from 1 to M :

F1, F2, . . . , FM . In such a case, it will be assumed that Fj = FIj .

Given an index set I ⊆ {1, . . . , N}, we define XI = ×i∈IXi to be the set of partial

outcomes (or suboutcomes) restricted to attributes indexed by I . For a factor Fj , xIj , or simply

xj , is a particular instantiation of its attributes. Let P be the set of all lotteries (probability

distributions) on X, and PI be the set of all lotteries on XI . For P ∈ P , PI is the marginal

lottery of P over XI . By convention, Pj = PIj will denote the marginal lottery over all the

partial outcomes in factor Fj .

Definition 3.1 (Generalized additive independence condition) Fishburn (1967b)

Factors F1, . . . , FM are (generalized) additively independent if

(P1, . . . , PM) = (Q1, . . . , QM) =⇒ P ∼ Q, for all P,Q ∈ P ,

where Pj, Qj ∈ Pj are the jth marginals of P,Q ∈ P (for j = 1, . . . ,M ). That is, the GAI

condition holds if and only if a decision maker is indifferent between two lotteries whenever

their marginal distributions on X1, . . . ,XM are the same.

Example 3.1 In the simple two-attribute example by Bacchus and Grove (1995), the outcome

space is defined by binary health (with values H and H̄) and wealth (with values W and W̄ )

attributes. The utilities are as follows: u(HW ) = 5, u(HW̄ ) = 2, u(H̄W ) = 1, u(H̄W̄ ) = 0.

If the two attributes (which can be viewed as factors that contain only one attribute each)

were (generalized) additively independent, then a decision maker would have to be indif-

ferent between any two lotteries that have the same marginals on each attribute. Let P =

〈0.25, HW ; 0.25, HW̄ ; 0.25, H̄W ; 0.25, H̄W̄ 〉, andQ = 〈0.5, HW ; 0, HW̄ ; 0, H̄W ; 0.5, H̄W̄ 〉.

Both P and Q have the same marginals on health and wealth attributes: Phealth = Qhealth =

〈0.5, H; 0.5H̄〉, and Pwealth = Qwealth = 〈0.5,W ; 0.5W̄ 〉. However, the decision maker is not
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indifferent between P and Q (since u(P ) = 2 and u(Q) = 2.5), and therefore, the two fac-

tors (attributes) in this example are not additively independent. Intuitively, the decision maker

prefers lotteries in which health and wealth are positively correlated. Generalized additive

independence covers more general cases where factors contain several attributes, and are not

necessarily disjoint.

The term generalized additive independence was popularized by Bacchus and Grove (1995),

and is currently widely accepted in the AI literature. Originally, Fishburn (1967b) used the term

interdependent additivity to denote this concept.

3.1.2 GAI representation theorem

As with additive utilities, the GAI preferential independence condition has a simple numerical

representation in a utility function whose structure reflects factor independence.

Theorem 3.1 (GAI representation) Fishburn (1967b)

Let u be a utility function representing user preferences over X. The GAI condition holds if

and only if there exist functions u1, . . . , uM on P1, . . . ,PM such that

u(P ) =
M∑
j=1

uj(Pj). (3.1)

By the expected utility theorem, u(P ) =
∑

x P (x)u(x), and uj(Pj) =
∑

xj
Pj(xj)uj(xj).

We will consider the proof of this theorem below in Section 3.1.5.

By holding an outcome x ∈ X ⊂ P to be a degenerate lottery in which x occurs with

certainty, we can rewrite the above GAI equation as:

u(x) = u1(xI1) + . . .+ uM(xIM ). (3.2)

The functions u1, . . . , uM on XI1 , . . . ,XIM will be referred to as subutility functions.

Example 3.2 Let’s consider the simplest non-trivial GAI model with three attributes X1, X2

and X3 grouped into two GAI factors I1 = {1, 2}, and I2 = {2, 3}. In a travel planning
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scenario described in the introduction, X1 could be the airline, X2 the flight class, and X3

the flight length. If, quite realistically, the strength of user preferences over flight class (e.g.,

economy or business) and airline depends on the flight length, then the simple additive user

utility function

uA(x) = u1(x1) + u2(x2) + u3(x3)

cannot adequately represent her true preferences. In contrast, a GAI function with two factors

is much more expressive:

uGAI(x) = u1(x1, x2) + u2(x2, x3).

In the following subsections, we will sketch the proof of the GAI representation theorem

(Fishburn, 1967b, 1970). This will allow us to better understand the notations and concepts

that are used later to describe the local structure of the GAI model. But first we define the

notions of reference and basic outcomes (the terminology is ours).

3.1.3 Reference outcome and basic outcomes

By decomposing the set of attributes into factors, GAI models impose a certain structure on

the space of all outcomes X. This structure is anchored by the reference outcome. In general,

the reference outcome can be any arbitrary fixed outcome in X. In elicitation, it is used as a

stable reference point when comparing and evaluating other outcome utilities. In most cases,

the reference outcome will be denoted as x0 = (x0
1, x

0
2, . . . , x

0
N).

By using a reference outcome, any outcome x ∈ X can be “projected” to a “subset space”

indexed by I , resulting in the outcome x[I]. For any x ∈ X, x[I] is an outcome where attributes

of x not indexed by I are “clamped” at the reference values: Xi = xi if i ∈ I , and Xi = x0
i

if i /∈ I . Thus, if x = (x1, x2), then x[{1}] = (x1, x
0
2), x[{1, 2}] = (x1, x2) = x, and

x[∅] = (x0
1, x

0
2) = x0.

We also use similar notation for projections of partial outcomes. If xj is a local configura-

tion of factor Fj , then xj[I] is a local configuration of factor Fj in which Xi = xi if i ∈ I ∩ Ij ,
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X1

x1
1 = x1y1

x2
1 = x2y1

x3
1 = x1y2

x4
1 = x2y2

(a) Factor F1

X2

x1
2 = y1z1

x1
2 = y2z1

x1
2 = y1z2

x1
2 = y2z2

(b) Factor F2

X

x1y1z1 = b1,1 = b2,1

x2y1z1 = b1,2

x1y2z1 = b1,3 = b2,2 = x0

x2y2z1 = b1,4

x1y1z2 = b2,3

x2y1z2

x1y2z2 = b2,4

x2y2z2

(c) Basic outcomes

Table 3.1: An illustrative example of a GAI model with three binary attributes x, y, z and two factors
F1 = {X,Y } and F2 = {Y,Z}. The reference outcome is x0 = x1y2z1; in all configu-
rations shown above, the reference values are underlined. Table (a) enumerates all the local
configurations of factor F1, and Table (b) enumerates all the local configurations of factor
F2. Table (c) shows all outcomes in X, and specifies which of those outcomes are basic out-
comes. For example, outcome x2y2z2 is not a basic outcome for any factor, whereas outcome
x2y2z1 = b1,4 is the fourth basic outcome of factor F1 (because x4

1 = x2y2 is the fourth lo-
cal configuration in factor F1, and z1 is the remaining attribute outside the factor, fixed at the
reference level). Some outcome might also be a basic outcome for several different factors:
x1y1z1 = b1,1 = b2,1 is a basic outcome for factors F1 and F2.
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and Xi = x0
i if i ∈ IC ∩ Ij (we use intersection with Ij to ensure that we deal only with

attributes within the factor Fj).

When the subset I in the reference projection x[I] is the index set of some GAI factor FI ,

x[I] is called a basic outcome for factor FI . Given GAI factors F1, . . . , FM , a basic outcome

for factor Fj is any outcome whose attributes outside the factor Fj are fixed at reference levels.

Definition 3.2 An outcome b ∈ X is a basic outcome for factor Fj if b = x[Ij] for some

x ∈ X.

If a factor Fj has Nj local configurations (instantiations of factor attributes), it also has Nj

corresponding basic outcomes. The kth basic outcome for factor Fj will be denoted bj,k. In

Table 3.1(c), the basic outcomes are listed in the second column.

Observation 3.1 If I ⊆ Ij , then x[I] is a basic outcome for factor Fj .

Proof In x[I], all attributes indexed by IC are fixed at reference values. Since ICj ⊆ IC (be-

cause I ⊆ Ij), all attributes indexed by ICj (which is a subset of IC) are fixed at reference

values. Therefore, x[I] is a basic outcome for factor Fj . �

As an example, consider an arbitrary basic outcome xIjx
0
ICj

for factor Fj , where the factor

configuration is xIj , and all the other attributes are fixed to the reference level x0
ICj

. Then, this

observation simply states that xIjx
0
ICj

is still a basic outcome for factor Fj if some of the values

in xIj happen to be reference values. Yet another way of looking at this is to realize that if

I ⊆ Ij , then applying the reference projection does not change the result: (x[I])[Ij] = x[I],

which, by definition, means that x[I] is a basic outcome for Fj . It also follows that the reference

outcome x0 = x[∅] is a basic outcome for any factor (since ∅ ⊂ Ij for all j).
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3.1.4 GAI structure lemma

We are now ready to introduce the GAI structure lemma (our terminology), that captures all

dependencies intrinsic to GAI utility functions and serves as a semantic foundation for GAI

models. In the following subsection, this lemma is used in the proof of the GAI representation

theorem.

Lemma 3.1 (GAI structure lemma) Fishburn (1967b)

Let u be a utility function representing user preferences over X. If the GAI condition holds,

then for all x ∈ X:

u(x) =
M∑
j=1

(−1)j+1
∑

S⊆{1,...,M},
|S|=j

u(x[∩s∈SIs]). (3.3)

Assuming the GAI condition, Lemma 3.1 provides a way to write the utility of any outcome

x as a sum of utilities of certain other basic outcomes. As defined above, these outcomes are

related to x in a specific way: in each of them, some attributes are set to the same levels as

in outcome x, while remaining attributes are at their reference values. We consider certain

properties of GAI models before proving Lemma 3.1.

Observation 3.2 All outcomes on the right side of the Equation 3.3 are basic outcomes.

Proof All outcomes on the right side have the form x[∩s∈SIs], where Is is an index set of the

factor Fs. Since ∩s∈SIs ⊆ Is′ for any s′ ∈ S, by Observation 3.1, x[∩s∈SIs] is a basic outcome

for factor Fs′ (in fact, it is a basic outcome for all factors indexed by elements of S). �

Going back to the Eq. 3.3, we see that it is a variant of the inclusion-exclusion principle

applied to factored utilities. On the right side of the equation, we add utilities of outcomes that

involve intersections of sets of factor attribute indices of size one, subtract utilities of outcomes

with intersections of sets of factor attribute indices of size two, and so on, until we reach M ,

the number of factors in the GAI model.
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Example 3.3 (Lemma 3.1) Given two factors F1 and F2, we have:

u(x) = u(x[I1]) + u(x[I2])− u(x([I1 ∩ I2]).

If I1 = {1, 2}, and I2 = {2, 3},

u(x1, x2, x3) = u(x1, x2, x
0
3) + u(x0

1, x2, x3)− u(x0
1, x2, x

0
3).

Applying the GAI structure lemma to outcomes from Table 3.1(c), we see that the utility of a

non-basic outcome x2y2z2 can always be written in terms of utilities of three basic outcomes:

u(x2y2z2) = u(x2y2z1) + u(x1y2z2)− u(x1y2z1).

With three factors F1, F2, F3, we have:

u(x) = u(x[I1]) + u(x[I2]) + u(x[I3])

− u(x[I1 ∩ I2])− u(x[I1 ∩ I3])− u(x[I2 ∩ I3])

+ u(x([I1 ∩ I2 ∩ I3]).

Probability distributions P and Q

To prove Lemma 3.1, we first introduce two special probability distributions P and Q.

Let R denote the power set of factor indices {1, . . . ,M}; also, let Re be the set of all

even-size subsets in R, and Ro be the set of all odd-size subsets.

Observation 3.3 Re contains the same number of elements as Ro. Since the size of R is 2M ,

|Re| = |Ro| = 2M−1.

Proof To see this, consider a binomial expansion of (1 + (−1))M :

0 = (1− 1)M =

(
M

0

)
−
(
M

1

)
+

(
M

2

)
− · · ·+ (−1)j

(
M

j

)
+ · · ·+ (−1)M

(
M

M

)
.

Since all the elements with negative coefficients represent the counts of odd-size subsets, and

all the elements with positive coefficients represent the counts of even-size subsets in R, the

number of odd-size subsets is equal to the number of even-size subsets. �
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We also define Rj ⊆ R (for j = 0, . . . ,M ) to be the set of subsets in R whose size is j.

The size of Rj is
(
M
j

)
.

Let’s recall that any outcome x ∈ X can be viewed as a degenerate probability distribution

that assigns all the probability to the outcome x. Therefore, the set of all outcomes X is a

subset of all probability distributions P . We introduce two special probability distributions P

and Q that are formed by a convex combination of certain outcomes in X (those outcomes

are treated as degenerate probability distributions). For any fixed outcome x, let P and Q be

probability distributions defined by:

P = αx +
∑
j≥2,
j even

∑
S∈Rj

αx[∩s∈SIs],

Q =
∑
j≥1,
j odd

∑
S∈Rj

αx[∩s∈SIs],

where α =
1

2M−1
.

Both P and Q are formed from 2M−1 (not necessarily distinct) elements of X ⊂ P . In P , the

sum is over all elements in Re, and in Q, the sum is over all elements in Ro. Since

∑
S∈Re

α =
∑
S∈Ro

α = 2M−1 1

2M−1
= 1,

both P andQ are valid probability distributions inP (they are formed by a convex combination

of other, degenerate, distributions in P).

To define the marginal distributions Pj and Qj , we take the marginals of the convex com-

bination components of P and Q and use the fact that x[I]j = xj[I] (the notation xj[I] was

defined in Section 3.1.3 above). That is, setting attributes in IC to reference values, and then

selecting out the attributes in Fj (x[I]j) is the same as first selecting the attributes in Fj and

then setting the values of attributes in IC to reference values (xj[I]). Therefore, the marginal
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distributions Pj and Qj are:

Pj = αxj +
∑
k≥2,
k even

∑
S∈Rk

αxj[∩s∈SIs],

Qj =
∑
k≥1,
k odd

∑
S∈Rk

αxj[∩s∈SIs].

Proof of GAI structure lemma

The GAI structure lemma 3.1 states that if the GAI condition holds, then for all x ∈ X:

u(x) =
M∑
j=1

(−1)j+1
∑

S⊆{1,...,M},
|S|=j

u(x[∩s∈SIs]).

Given two probability distributions P and Q, as defined above, it can be shown that their

factor marginals are equal: Pj = Qj for all j = 1..M (we provide the full proof in Appendix B).

Let’s assume that the GAI condition holds. Therefore, since all the marginals are equal, P ∼ Q.

By the expected utility theorem (Eq. 2.8), P ∼ Q =⇒ u(P ) = u(Q), and Eq. 3.3 follows:

Pj = Qj for all j = 1..M =⇒

P ∼ Q =⇒

u(P ) = u(Q) =⇒

u

αx +
∑
j≥2,
j even

∑
S∈Rj

αx[∩s∈SIs]

 = u

∑
j≥1,
j odd

∑
S∈Rj

αx[∩s∈SIs]

 =⇒

u(x) +
∑
j≥2,
j even

∑
S∈Rj

u(x[∩s∈SIs]) =
∑
j≥1,
j odd

∑
S∈Rj

u(x[∩s∈SIs]) =⇒

u(x) =
∑
j≥1,
j odd

∑
S∈Rj

u(x[∩s∈SIs])−
∑
j≥2,
j even

∑
S∈Rj

u(x[∩s∈SIs]) =⇒

u(x) =
M∑
j=1

(−1)j+1
∑
S∈Rj

u(x[∩s∈SIs]).

This proves the GAI structure lemma 3.1. �
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3.1.5 Proof of GAI representation theorem

The GAI structure lemma 3.1 is a key element in the proof of the GAI representation theorem.

The GAI representation theorem 3.1 states that the GAI condition holds if and only if there

exist functions u1, . . . , uM on P1, . . . ,PM such that u(P ) =
∑M

j=1 uj(Pj).

“If” direction

We first show that having a utility function of the form u(P ) =
∑M

j=1 uj(Pj) implies the GAI

condition, i.e., if two probability distributions P and Q have the same marginals on factors,

P ∼ Q. Let’s assume P and Q have equal marginals on factors: Pj = Qj for all j = 1..M .

This means that their utilities have to be equal, too: u(P ) =
∑M

j=1 uj(Pj) =
∑M

j=1 uj(Qj) =

u(Q). By the expected utility theorem (Eq. 2.8), this implies that P ∼ Q. �

“Only if” direction

The other direction of the proof is more complicated, and relies on the GAI structure lemma 3.1.

Here, we have to prove that the GAI condition implies the existence of subutility functions

u1, . . . , uM such that u(x) =
∑M

j=1 uj(xj).

We start by defining subutility functions uj on Xj:

uj(xj) = u(x[Ij]) +
∑

1≤q<j

(−1)q
∑

S⊆{1,...,j−1},
|S|=q

u(x[
⋂
s∈S

Is ∩ Ij]). (3.4)

The subutility function uj is well-defined since for x,y ∈ X, uj(xj) = uj(yj) if xj = yj . This

is because all outcomes on the right-hand side are basic outcomes of factor Fj (that is, in all

outcomes on the right-hand side, the attributes that are not in factor Fj are set to their reference
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values). Summing over all factors:

M∑
j=1

uj(xj) =
M∑
j=1

u(x[Ij]) +
M∑
j=1

∑
1≤q<j

(−1)q
∑

S⊆{1,...,j−1},
|S|=q

u(x[
⋂
s∈S

Is ∩ Ij])

=
M∑
j=1

u(x[Ij]) +
M−1∑
q=1

(−1)q
M∑

j=q+1

∑
S⊆{1,...,j−1},
|S|=q

u(x[
⋂
s∈S

Is ∩ Ij])

=
M∑
j=1

u(x[Ij]) +
M−1∑
q=1

(−1)q
∑

S⊆{1,...,M},
|S|=q+1

u(x[
⋂
s∈S

Is])

=
∑

S⊆{1,...,M},
|S|=1

u(x[
⋂
s∈S

Is]) +
M∑
j=2

(−1)j+1
∑

S⊆{1,...,M},
|S|=j

u(x[
⋂
s∈S

Is])

=
M∑
j=1

(−1)j+1
∑

S⊆{1,...,M},
|S|=j

u(x[
⋂
s∈S

Is]).

We now know that
∑M

j=1 uj(xj) =
∑M

j=1(−1)j+1
∑

S⊆{1,...,M},|S|=j u(x[
⋂
s∈S Is]). We

assume that the GAI condition holds. Therefore, according to the GAI structure lemma 3.1,

u(x) =
∑M

j=1(−1)j+1
∑

S⊆{1,...,M},|S|=j u(x[
⋂
s∈S Is]), which means that

M∑
j=1

uj(xj) =
M∑
j=1

(−1)j+1
∑

S⊆{1,...,M},
|S|=j

u(x[
⋂
s∈S

Is]) = u(x).

Thus, u(x) =
∑M

j=1 uj(xj), which concludes the proof of the GAI representation theorem.�

3.2 Local structure semantics in GAI models

In this section, we discuss problems that arise in eliciting and reasoning with GAI subutility

functions, and propose specific solutions to these issues. In particular, we show how to interpret

the GAI subutility semantics, explore the graphical nature of GAI models, and present a way to

write the model in a manner that preserves the local value function semantics of additive mod-

els. Using our representation, GAI models can be elicited by largely using local queries about

preferences over small subsets of attributes, and relying on global queries only for calibration
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across utility factors. This allows one to exploit the generality, compactness and much wider

applicability of GAI models without losing the advantage of elicitation based on local queries

(offered by more restrictive additive models).

3.2.1 GAI subutility functions

3.2.1.1 Additive utilities

Before we take a deeper look at the subutility functions in GAI models, let’s consider the

simpler additive model. Similar to the GAI independence condition, additive independence

leads to the following additive utility representation (Eq. 2.14):

u(x) =
N∑
i=1

ui(xi).

The domains of subutility functions are single attributes, rather than sets of attributes, as in the

case of general GAI utilities.

For a given additive utility function u, the subutilities ui have a very special property:

they are unique up to the simultaneous transformations u′i(xi) = ui(xi) + ci for all xi ∈ Xi,

i = 1, 2, . . . , N ,
∑
ci = 0 (Fishburn, 1965). That is, u could be written as a sum of functions

ui, or a sum of functions u′i, but the only allowable difference between ui and u′i is the constant

ci.

This is a very strong condition on the possible transformations of the subutility functions.

Due to this condition, the subutility functions ui for additive utilities preserve local preference

relations, which is a very intuitive and desirable property. That is,

xi � yi, ceteris paribus ⇐⇒ ui(xi) ≥ ui(yi)

⇐⇒ ui(xi) + ci ≥ ui(yi) + ci

⇐⇒ u′i(xi) ≥ u′i(yi) for some u′i. (3.5)

Thus, additive subutility functions are essentially unique (apart from an additive constant ci)

and they represent local preference relations.
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3.2.1.2 Non-uniqueness of GAI subutilities

Unlike additive models, GAI subutilities are not unique; in fact, for any GAI utility function

with a fixed set of overlapping factors, there are an infinite number of non-trivial ways to define

the subutility functions uj (Eq. 3.2) such that they still comprise the same utility function u.

Furthermore, unlike in additive models, the values of subutility functions uj do not directly

represent the local preference relation among the attributes in factor Fj . Since the utility can

“flow” from one subutility factor to the next through the shared attributes, the subutility values

do not have an independent semantic meaning.

The following examples illustrate the problem.

Example 3.4 In the additive case, ui(x1
i ) > ui(x

2
i ) implies that outcomes with ith attribute

set to x1
i are preferred to outcomes with x2

i , as long as the rest of attributes are kept constant.

However, this implication does not extend to GAI models. Let’s take our three-attribute ex-

ample u(x, y, z) = u1(x, y) + u2(y, z) from Table 3.2. If we knew that u1(x1, y1) = 100 and

u1(x2, y2) = 50, would that imply (x1, y1) � (x2, y2), ceteris paribus? Based on the u1 param-

eters, it would seem natural that the highest valued outcome in u1, (x1, y1), would be preferred

to the lowest valued outcome (x2, y2), ceteris paribus. As we shall see, this is not the case. It

turns out that because of factor interdependence through shared attributes, we can rewrite the

utility function u as follows

u(x, y, z) = u1(x, y) + u2(y, z)

= [u1(x, y) + f(y)] + [u2(y, z)− f(y)]

= u′1(x, y) + u′2(y, z),

where f : Y 7→ R is an arbitrary real-valued function.

By setting f(y1) = −50, and f(y2) = 50, we obtain u′1(x1, y1) = 50 and u′1(x2, y2) = 100,

the exact opposite values from those in u1(·). The subutility value changes in the first factor

are suitably compensated by changes in the second factor, leaving the overall utility function

exactly the same. Since the utility can “flow” from one subutility factor to the next through
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x1 u1(x1) u′1(x1)

x1y1 100 50

x2y1 70 20

x1y2 90 140

x2y2 50 100

(a) Factor F1

x2 u2(x2) u′2(x2)

y1z1 100 150

y2z1 50 0

y1z2 60 110

y2z2 30 -20

(b) Factor F2

x u1(x1) + u2(x2) u′1(x1) + u′2(x2) u(x)

x1y1z1 100+100 50+150 200

x2y1z1 70+100 20+150 170

x1y2z1 90+50 140+0 140

x2y2z1 50+50 100+0 100

x1y1z2 100+60 50 + 110 160

x2y1z2 70+60 20 + 110 130

x1y2z2 90+30 140-20 120

x2y2z2 50+30 100-20 80

(c) GAI utility function

Table 3.2: The parameters of the GAI utility function u(x, y, z) = u1(x, y) + u2(y, z) = u′1(x, y) +
u′2(y, z) from Example 3.4. In the first decomposition, u1(x1, y1) > u1(x2, y2); however, in
the second decomposition u′1(x1, y1) < u′1(x2, y2). The semantics of subutility functions is
therefore not obvious.
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the shared attributes, the subutility values do not have an independent semantic meaning. In

GAI settings, local factor outcomes cannot be compared in a “ceteris paribus” manner (as in

the additive utility case), because the local order depends on the particular instantiation of

some of the attributes outside the factor (the smallest set of such attributes will be later called

the conditioning set). We can also see that the same utility function can be decomposed in an

infinite number of non-trivial ways (because f is an arbitrary real-valued function). Table 3.2

shows all the parameters of the three-attribute utility function used in this example.

Example 3.5 The second example shows that possibility of non-trivial transformations of GAI

subutility functions is problematic for the UCP network semantics. A UCP network (Boutilier

et al., 2001) is a graphical representation of a GAI utility such that its network structure reflects

conditional dependencies of an underlying CP network (Boutilier et al., 1999, 2004b), and

the represented utility function satisfies all of the conditional preference statements of the CP

network. Figure 3.1 shows a simple CP network (Boutilier et al., 2004b), with its two UCP

extensions (Figures 3.1b, 3.1c). Both UCP extensions represent the same utility function that

induces the following preference order satisfying the underlying CP network:

abc � abc̄ � ab̄c̄ � ab̄c � āb̄c̄ � āb̄c � ābc � ābc̄

However, the second extension, obtained from the first by setting f(b) = 5, f(b̄) = 30,

results in UCP factor subutilities that do not allow us to directly recover corresponding con-

ditional preference tables (CPTs) of the underlying CP network. For example, we know that,

given a, b � b̄, ceteris paribus. As expected, in the first UCP network, u1(ab) > u2(ab̄), but in

the second, u′1(ab) < u′2(ab̄). Both networks are valid UCP representations, since they define

the same utility function, and satisfy all of the conditional preference statements of the under-

lying CP network. However, because the second network does not allow us to directly read off

the underlying CP preferences, the elicitation of local factor subutilities is more involved than

the method proposed in the original UCP paper (Boutilier et al., 2001).
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A

B

C

a ā

a b b̄

ā b̄ b

b c c̄

b̄ c̄ c

ābc̄

ābc

āb̄c

āb̄̄c

ab̄c

ab̄̄c

abc̄

abc

(a) CP-net, with conditional preference tables and its partial order graph

u0(A) u1(A,B) u2(B,C)

a 5 ab 35 bc 10

ā 0 ab̄ 15 bc̄ 8

āb̄ 12 b̄c̄ 2

āb 2 b̄c 1

(b) UCP extension 1

u′0(A) u′1(A,B) u′2(B,C)

a 5 ab 40 bc 5

ā 0 ab̄ 45 bc̄ 3

āb̄ 42 b̄c̄ -28

āb 7 b̄c -29

(c) UCP extension 2

Figure 3.1: A CP network (Boutilier et al., 2004b) and two equivalent UCP extensions (see Example 3.5
for full details).
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3.2.1.3 Admissible transformations

To get a better insight into the problem, we need to answer the following question: given a

utility function u(x) =
∑
uj(xj), what are the possible transformations on subutility functions

uj such that u remains unchanged? As we noted before, for additive utilities, such admissible

transformations are (Fishburn, 1965):

u′i(xi) = ui(xi) + ci, for all i = 1, . . . , N,

N∑
i=1

ci = 0.

For GAI utilities, admissible transformations are more general. For any two factors Fj and

Fk with shared attributes, we can define an arbitrary function fjk : XIj∩Ik 7→ R on all the

configurations of the shared attributes, and transform uj by adding fjk, and uk by subtracting

fjk. Such transformations can drastically change local subutility functions, without changing

the overall utility function. More formally, admissible transformations for GAI models are

(Fishburn, 1967b):

u′j(xj) = uj(xj) +
∑
j 6=k

Ij∩Ik 6=∅

fjk(xIj∩Ik) + cj, for all j = 1, . . . ,M, (3.6)

M∑
j=1

 ∑
j 6=k

Ij∩Ik 6=∅

fjk(xIj∩Ik) + cj

 = 0.

Since the admissible transformations for GAI utilities are more general than positive affine

transformations, subutility functions uj and u′j are not necessarily strategically equivalent (i.e.,

they do not necessarily represent the same preference order over local lotteries). The rest of

the chapter describes a semantically sound way of dealing with this problem.

3.2.1.4 Canonical subutilities

The key difference between additive and GAI models with regard to elicitation (rather than

representation) lies in the semantics of subutility functions uj . In additive models, subutilities
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uj have a very clear decision-theoretic meaning. In contrast, GAI subutility functions are

not unique and, in the absence of further qualifications, do not have a well-defined semantic

interpretation. To solve this issue, we designate a particular GAI subutility representation as

the canonical representation, and devise elicitation queries and techniques that preserve the

semantics of GAI models.

As we saw in Section 3.1.2, GAI subutility functions are constructed by a judicious group-

ing of addends on the right side of the Eq. 3.3 (GAI structure lemma), resulting in functions

u1, . . . , uM such that u(x) =
∑M

j=1 uj(xj):

u(x) =
M∑
j=1

(−1)j+1
∑

S⊆{1,...,M},
|S|=j

u(x[∩s∈SIs]).

Given a GAI model, however, there are multiple ways of defining subutility functions. For

example, with factors F1 = {X1, X2} and F2 = {X2, X3}, we have:

u(x1, x2, x3) = u(x1, x2, x
0
3) + u(x0

1, x2, x3)− u(x0
1, x2, x

0
3).

One way to define subutility functions would be to group u(x1, x2, x
0
3) and u(x0

1, x2, x
0
3), so

that u1(x1, x2) = u(x1, x2, x
0
3) − u(x0

1, x2, x
0
3), and u2(x2, x3) = u(x0

1, x2, x3). Another subu-

tility decomposition would result if instead u(x0
1, x2, x3) and u(x0

1, x2, x
0
3) were put together:

u′1(x1, x2) = u(x1, x2, x
0
3), and u′2(x2, x3) = u(x0

1, x2, x3)− u(x0
1, x2, x

0
3).

To define a canonical representation of GAI subutility functions, we adopt the group-

ing used by Fishburn (1967b) in proving the GAI representation theorem. Consider the set

D = {(−1)|S|+1 u(x[∩s∈SIs]), S ⊆ {1, . . . ,M}} of all the addends that appear on the

right side of the equation above (same as Eq. 3.3). Each addend corresponds to some subset

S ⊆ {1, . . . ,M}. We partition the set D into M groups as follows: an addend corresponding

to the subset S belongs to group j if j is the greatest element in S. For example, with three fac-

tors F1, F2, F3, addends u(x[I2]) and−u(x[I1∩I2]) belong to group 2, whereas−u(x[I1∩I3])

and u(x([I1 ∩ I2 ∩ I3]) belong to group 3.
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By rewriting the order of addends, we obtain a canonical GAI subutility decomposition:

u(x) =
M∑
j=1

(−1)j+1
∑

S⊆{1,...,M},
|S|=j

u(x[∩s∈SIs])

=
M∑
j=1

u(x[Ij]) +
∑

1≤q<j

(−1)q
∑

S⊆{1,...,j−1},
|S|=q

u(x[
⋂
s∈S

Is ∩ Ij])


=

M∑
j=1

uj(xj).

Definition 3.3 (Canonical GAI subutility decomposition)

u1(x1) = u(x[I1]), (3.7)

uj(xj) = u(x[Ij]) +
∑

1≤q<j

(−1)q
∑

S⊆{1,...,j−1},
|S|=q

u(x[
⋂
s∈S

Is ∩ Ij]).

Example 3.6 With three factors F1, F2, F3, addends u(x[I2]) and u(x[I1∩I2]) belong to Group

2, whereas u(x[I1 ∩ I3]) and u(x([I1 ∩ I2 ∩ I3]) belong to Group 3:

u(x) = u(x[I1]) + u(x[I2]) + u(x[I3])

− u(x[I1 ∩ I2])− u(x[I1 ∩ I3])− u(x[I2 ∩ I3])

+ u(x[I1 ∩ I2 ∩ I3])

= u(x[I1])

+ u(x[I2])− u(x[I1 ∩ I2])

+ u(x[I3])− [u(x[I1 ∩ I3]) + u(x[I2 ∩ I3])] + u(x[I1 ∩ I2 ∩ I3]).

Thus,

u1(x1) = u(x[I1]),

u2(x2) = u(x[I2])− u(x[I1 ∩ I2]),

u3(x3) = u(x[I3])− u(x[I1 ∩ I3])− u(x[I2 ∩ I3]) + u(x[I1 ∩ I2 ∩ I3]).
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We should keep in mind that u denotes utility of full outcomes, whereas uj is defined only over

attributes in factor Fj .

3.2.2 GAI structure

Having proposed the canonical decomposition of GAI models, in this section we investigate

the properties of subutility functions uj and algorithms for their computation.

Relevant and irrelevant subsets

To better understand how to compute a subutility function uj(xj), we rewrite it as follows:

uj(xj) = u(x[Ij]) +
∑

1≤q<j

(−1)q
∑

Sq⊆{1,...,j−1},
|Sq |=q

u(x[
⋂
s∈Sq

Is ∩ Ij])

= u(x[Ij]) +
∑

S⊆{1,...,j−1},
S 6=∅

(−1)|S| u(x[
⋂
s∈S

Is ∩ Ij]). (3.8)

All the outcomes on the right-hand side are basic outcomes for factor Fj . Eq. 3.8 relates

factor subutility values to utilities of its basic outcomes.

Observation 3.4 The number of addends in Eq. 3.8 above is 2j−1. The number of distinct

addends (ignoring sign coefficients (−1)|S|) is at most Nj = |Xj|, the number of all local

configurations in factor Fj .

Proof The summation above is over all 2j−1 members of the powerset of {1, . . . , j − 1},

except ∅. Thus, the total number of addends is 1 + (2j−1 − 1) = 2j−1. As observed before,

all the outcomes on the right-hand side of Eq. 3.8 are basic outcomes for factor Fj , and each

factor has Nj basic outcomes.�

Our goal is to find the basic outcomes involved in Eq. 3.8, which involves summing over

all the subsets of {1, . . . , j − 1}. In practice, we expect GAI models to exhibit considerable

structure, and intersections between factors to involve only a few variables. In such case, for a

lot of subsets S ⊆ {1, . . . , j−1}, the intersections
⋂
s∈S Is (and, therefore, (

⋂
s∈S Is)∩Ij), will
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be empty. We denote such subsets S as irrelevant (for factor Fj), and the ones whose member

intersections with Ij are non-empty as relevant. By separating the summations over relevant

and irrelevant sets, we have:

uj(xj) = u(x[Ij]) +
∑

S⊆{1,...,j−1},
S 6=∅

(−1)|S| u(x[
⋂
s∈S

Is ∩ Ij])

= u(x[Ij]) +
∑

S⊆{1,...,j−1},
S is relevant

(−1)|S| u(x[
⋂
s∈S

Is ∩ Ij]) +
∑

S⊆{1,...,j−1},
S is irrelevant

(−1)|S| u(x0).

Here, we use the fact that x[∅] = x0.

Let σR denote the sum of coefficients (−1)|S| over all relevant sets S, and σR̄ denote the

sum of coefficients (−1)|S| over all irrelevant sets S:

σR =
∑

S⊆{1,...,j−1},
S is relevant

(−1)|S|

σR̄ =
∑

S⊆{1,...,j−1},
S is irrelevant

(−1)|S|. (3.9)

Then, since the third part of the subutility equation above can be written as∑
S⊆{1,...,j−1},
S is irrelevant

(−1)|S| u(x0) = u(x0)
∑

S⊆{1,...,j−1},
S is irrelevant

(−1)|S| = σR̄ u(x0),

the subutility equation becomes:

uj(xj) = u(x[Ij]) +
∑

S⊆{1,...,j−1},
S is relevant

(−1)|S| u(x[
⋂
s∈S

Is ∩ Ij]) + σR̄ u(x0). (3.10)

Eq. 3.10 is useful, because it shows that to compute a GAI subutility function, we only

need to consider relevant subsets S (the number of which, if GAI factors do not overlap too

much, will be small), and know the coefficient σR̄. Fortunately, computing σR̄ is easy, once the

collection of relevant sets (and, therefore, σR) is known.

Observation 3.5

σR̄ = −1− σR = −1−
∑

S⊆{1,...,j−1},
S is relevant

(−1)|S|, for j ≥ 2.

When j = 1, σR̄ = 0.
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Proof We can prove this by using binomial expansion (similar to the previous result for Ob-

servation 3.3). For j ≥ 2:

1 + σR + σR̄ = 1 +
∑

S⊆{1,...,j−1},
S 6=∅

(−1)|S| =

j−1∑
k=0

(
j − 1

k

)
(−1)k = (1− 1)j−1 = 0.

When j = 1, the above equation is equal to 1, instead of 0. In this special case, σR = 1, and

σR̄ = 0. �

Let Lj denote the set of all relevant sets for factor Fj:

Lj = {S|S ⊆ {1, . . . , j − 1}, S is relevant}

= {S|S ⊆ {1, . . . , j − 1},
⋂
s∈S

Is ∩ Ij 6= ∅}

= {S|S ⊆ {k|k < j, Ik ∩ Ij 6= ∅},
⋂
s∈S

Is ∩ Ij 6= ∅}. (3.11)

In the equation above, the second line follows from the definition of relevant sets. The third line

provides an alternative definition of relevant sets by taking into account the observation that

any element s of a relevant set S has to satisfy the condition Is ∩ Ij 6= ∅ (since, by definition,

relevant sets satisfy the stronger condition
⋂
s∈S Is ∩ Ij 6= ∅).

Eq. 3.10 can now be rewritten as:

uj(xj) = u(x[Ij]) +
∑

S⊆{1,...,j−1},
S is relevant

(−1)|S| u(x[
⋂
s∈S

Is ∩ Ij]) + σR̄ u(x0)

= u(x[Ij]) +
∑

S⊆{k|k<j,Ik∩Ij 6=∅},
S is relevant

(−1)|S| u(x[
⋂
s∈S

Is ∩ Ij]) + σR̄ u(x0)

= u(x[Ij]) +
∑
S∈Lj

(−1)|S| u(x[
⋂
s∈S

Is ∩ Ij]) + σR̄ u(x0). (3.12)

In the summation above, instead of considering all the possible 2j−1 subsets of {1, . . . , j −

1}, we only have to consider subsets of indices of factors preceding Fj that share attributes with

factor Fj . In GAI models with limited dependencies among factors, this significantly reduces

the complexity of finding the relevant sets. Below, we describe a graphical search procedure

for finding the relevant sets that is based on Eq. 3.12.
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Figure 3.2: An example of a GAI graph. Nodes correspond to factor index sets, and higher index nodes
link to lower index nodes if the intersection between the factor index sets is not empty. Edges
are labeled by the intersections of the adjacent node index sets.

Graphical search procedure for finding relevant sets

We assume a set of factors {F1, ..., FM}with an arbitrary ordering induced by theM subscripts.

Each factor Fj has an associated index set Ij denoting the indices of the attributes in Fj: Fj =

{Xi | i ∈ Ij}. The index sets Ij cover all attribute indices: ∪Ij = {1, . . . , N}.

Given the factors, we construct a GAI graph whose nodes are numbered from 1 to M . The

node i corresponds to the index set Ii; two nodes j and k are linked by a directed edge from

j to k if Ik ∩ Ij 6= ∅ (that is, the index sets Ik and Ij share some variables) and k < j. Since

directed edges always link higher-numbered nodes to lower-numbered nodes, there can be no

cycles: a GAI graph is a directed acyclic graph.1 Fig. 3.2 shows an example of a GAI graph,

with edges labeled with intersections of adjacent node index sets.

A GAI graph can be used to compute the relevant sets for GAI factors. For a given factor

Fj , any node k < j that intersects the starting node j can be reached by following the directed

edges from j to k. Furthermore, all the nodes along any path from j to k also intersect the

starting node j. If a node does not intersect with j, then its descendants do not intersect with j

either. Each relevant set for factor Fj corresponds to the nodes along a distinct path from j to

1An undirected version of the GAI graph was called a GAI network by Gonzales and Perny (2004). However,
the GAI network was used for a different purpose.
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Input: GAI attribute sets I1, . . . , IM
Output: For each subutility factor Fj , a collection Lj of relevant sets

foreach factor Fj do
Lj = ∅
Start at node j and perform depth-first search along the directed arcs
foreach node k do

S = {nodes on path from j to k}
if
⋂
s∈S Is ∩ Ij 6= ∅, i.e., the intersection of all the nodes on the current path

from j to k is non-empty then
add S to Lj
visit the children nodes of node k

end
end

end

Figure 3.3: Algorithm for computing relevant sets for GAI factors

some node k whose intersection with j is non-empty.

The full algorithm to compute the relevant sets for all factors is shown in Figure 3.3. For

each factor Fj , we start with the node j, and search along directed edges for all lower-numbered

nodes that intersect with the starting node j. If some node k intersects j, the set of all nodes

along the path from j to k is a relevant set. If k does not intersect j, then we can backtrack,

because the descendants of k do not intersect j either. We store all the relevant sets for factor

Fj in the collection Lj .

After finding the relevant sets L1, . . . , Lj , we can define subutility functions using Eq. 3.12:

uj(xj) = u(x[Ij]) +
∑
S∈Lj

(−1)|S| u(x[
⋂
s∈S

Is ∩ Ij]) + σR̄ u(x0),

where σR̄ = −1−
∑

S∈Lj(−1)|S|, unless j = 1, in which case it is 0.

Example 3.7 Consider the GAI graph in Fig. 3.2 and the search trees for factors F5 and F3

in Fig. 3.4(a) and Fig. 3.4(b). To compute L5, we search along the directed edges for all

non-empty intersections of the set I5 with other sets. The only such sets are I4 (depth 1) and I1

(depth 1). Therefore, L5 = {{4}, {1}}, and u5(x5) = u(x[{I5}])−u(x[{I4∩I5}])−u(x[{I1∩

I5}]) + u(x0) = u(x[{5, 6}]) − u(x[{5}]) − u(x[{6}]) + u(x0). Similarly, the relevant sets

for factor F3 are L3 = {{2}, {2, 1}, {1}}, and u3(x3) = u(x[{I3}]) − u(x[{I2 ∩ I3}]) +
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(a) Search tree for factor F5 (b) Search tree for factor F3

Figure 3.4: The search trees of a GAI graph from Figure 3.2 for finding the relevant sets for factors F5

(3.4a) and F3 (3.4a). Each node in a search tree corresponds to a relevant set consisting of
the node and all the preceding nodes. If a node’s intersection with the root node is empty, the
subtree rooted at that node does not have to be searched (in Figure 3.4a, the shaded subtree
rooted at I3 is not relevant, since the nodes in that subtree do not intersect I5). To find the
relevant sets, we visit every node in a search tree and record the preceding nodes (except the
root node). For F5 (3.4a), L5 = {{4}, {1}}; therefore, u5(x5) = u(x[{I5}]) − u(x[{I4 ∩
I5}])−u(x[{I1∩I5}])+u(x0) = u(x[{5, 6}])−u(x[{5}])−u(x[{6}])+u(x0). Similarly,
the relevant sets for factor F3 are L3 = {{2}, {2, 1}, {1}}, and u3(x3) = u(x[{I3}]) −
u(x[{I2 ∩ I3}]) + u(x[{I2 ∩ I1 ∩ I3}]) − u(x[{I1 ∩ I3}]) = u(x[{2, 4}]) − u(x[{2}]) +
u(x[{2}])− u(x[{2}]) = u(x[{2, 4}])− u(x[{2}]). Example 3.7 provides further details.
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u(x[{I2 ∩ I1 ∩ I3}])− u(x[{I1 ∩ I3}]) = u(x[{2, 4}])− u(x[{2}]) + u(x[{2}])− u(x[{2}]) =

u(x[{2, 4}])− u(x[{2}]).

The search algorithm is guaranteed to terminate, because the search follows edges from

high-numbered nodes to lower-numbered nodes. For a given factor Fj , the running time is

exponential in the length of the longest path in a GAI graph from j to some node k < j that

intersects j (since there might be exponentially many paths from j to k). In the worst case,

when the intersection of Ij and all the preceding factors Ik (k < j) is non-empty, the number

of relevant sets (or, alternatively, the number of paths from node j−1 to node 1), might be

exponential in j−1. The total running time of the algorithm is exponential in the size of the

largest set of factors with at least one common attribute. Let D be the largest intersection

among all factors:

D = max
S⊆{1,...,M},
∩s∈SIs 6=∅

|S|.

Then, the relevant set algorithm running time is exponential in D. If the factors are sparsely

connected (D is bounded by a constant), or if the number of factors is not too large, finding the

relevant sets is a computationally fast procedure.

Local configurations and basic outcomes

Knowing relevant sets enables us to represent GAI utilities in a convenient parameterized form

that is decision-theoretically sound and is well-suited for elicitation. Before that, we need to

introduce the equivalence between a factor’s local configurations and its basic outcomes.

While x is some instantiation of all N attributes, xj is a restricted instantiation of attributes

in factor Fj only; we refer to xj as a local suboutcome, or a local configuration. Let Nj be

the number of all possible local configurations (settings of attributes) in factor Fj (e.g., with 3

boolean attributes, Nj = 8). We also assume that we can enumerate all local configurations in

some consistent way, based on their attribute and attribute value indices. Then, if 1 ≤ k ≤ Nj

is the index of some local configuration in factor Fj , we refer to that configuration as xkj .
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Conversely, ind(xj) specifies the index of the local configuration xj (so that ind(xkj ) = k).

Example 3.8 In factor F2 with two binary attributes X2 and X3, the four local configurations

are:

x1
2 = (x0

2, x
0
3),

x2
2 = (x1

2, x
0
3),

x3
2 = (x0

2, x
1
3),

x4
2 = (x1

2, x
1
3).

If an attributeXi is binary, one of the values has to be the reference value (x0
i ); the other value is

x1
i . Recall that Bj is the set of basic outcomes of factor Fj , consisting of all possible outcomes

x with attributes outside factor Fj fixed at reference levels: Bj = {x[Ij], x ∈ X}. The size

of Bj is Nj , the number of local configurations in factor Fj . This is because the attributes

outside factor Fj are all fixed (at reference levels). Furthermore, there exists a one-to-one

correspondence between local configurations and basic outcomes in each factor Fj . Each local

configuration xkj can be extended to a full outcome by fixing the values of other attributes to

their reference levels; we denote an extension of xkj as ext(xkj ) = x[Ij]
k = bj,k. Thus, bj,k is

the kth basic outcome of factor Fj . Every extension of a local configuration is a basic outcome

for factor Fj:

Bj = {x[Ij], x ∈ X} (3.13)

= {ext(xkj ) = x[Ij]
k = bj,k, k = 1, . . . , Nj}.

Example 3.9 Continuing Example 3.8, we can obtain the four basic outcomes corresponding

to the four local configurations of factor F2 by setting the attributes outside F2 to reference
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values:

x1
2 = (x0

2, x
0
3) ←→ b2,1 = (x0

1, x
0
2, x

0
3),

x2
2 = (x1

2, x
0
3) ←→ b2,2 = (x0

1, x
1
2, x

0
3),

x3
2 = (x0

2, x
1
3) ←→ b2,3 = (x0

1, x
0
2, x

1
3),

x4
2 = (x1

2, x
1
3) ←→ b2,4 = (x0

1, x
1
2, x

1
3).

Structure coefficients

We use the results of the GAI graph search algorithm (i.e., relevant sets Lj for each factor), and

basic outcome sets Bj to define the final parameterized form for GAI utility functions. From

Eq. 3.12, we can see that all outcomes on the right side are basic outcomes for factor Fj . Since

the total number of basic outcomes (for factor Fj) is Nj , the number of local configurations,

the subutility value for the rth suboutcome of factor Fj can be written as:

uj(x
r
j) = u(xr[Ij]) +

∑
S∈Lj

(−1)|S| u(xr[
⋂
s∈S

Is ∩ Ij]) + σR̄ u(x0)

=

Nj∑
k=1

Cj[r, k] u(bj,k)

=

Nj∑
k=1

Cj[r, k] θkj , (3.14)

where θkj = u(bj,k) is the utility of the kth basic outcome of factor Fj , and Cj is a square

Nj × Nj matrix of integer structure coefficients. The procedure for computing the structure

coefficients (based on Eq. 3.14) is shown in Figure 3.5.

Thus, even though in Eq. 3.8 the number of addends is 2j−1, since all of them are basic

outcomes, the number of unique addends cannot exceed Nj (see Observation 3.4). Our GAI

graph search procedure identifies the relevant ones, which allows us to compute the structure

coefficients and express the GAI function as a linear combination of basic outcome utilities:

u(x) =
M∑
j=1

Nj∑
k=1

Ck
xj
θkj , (3.15)
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Input: relevant sets Lj for each factor Fj
Output: for each factor Fj , a square Nj ×Nj matrix Cj of structure coefficients

foreach factor Fj do
Cj = I (identity matrix)
σR̄ ← −1−

∑
S∈Lj(−1)|S| (σR̄ ← 0 if Fj = F1)

foreach local configuration xrj , r = 1, . . . , Nj do
foreach set S in Lj do

k ← ind(xrj [
⋂
s∈S Is])

Cj[r, k]← Cj[r, k] + (−1)|S|

end
Cj[r, k0]← Cj[r, k0] + σR̄, where k0 is the index of the reference configuration

end
end

Figure 3.5: Procedure for computing structure coefficients Cj

where Ck
xj

= Cj[ind(xj), k]. If we knew all parameters θkj , we could find the utility of any

outcome x ∈ X. Since structure coefficients are fixed given the GAI factor decomposition, the

goal of our elicitation procedures will be to estimate the GAI parameters θkj .

The structure matrix Cj for each factor Fj consists of |Xj|2 entries. The number of all GAI

parameters θkj is the same as the number of all factor configurations:

|{θ1
1, . . . , θ

k
j , . . . , θ

NM
M }| =

M∑
j=1

|Xj|.

Thus, apart from structure matrices Cj , by using the GAI representation in Eq. 3.15, we do not

increase the size of GAI representation (compared to the traditional factored GAI representa-

tion).

Example 3.10 We continue the previous examples with I1 = {1, 2} and I2 = {2, 3}, and all

binary attributes. From the dependency structure, we know that

u2(x2, x3) = u(x[I2])− u(x([I1 ∩ I2]) = u(x0
1, x2, x3)− u(x0

1, x2, x
0
3),
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where xi is a generic binary attribute that could take the values x0
i or x1

i . Then,

u2(x1
2) = u2(x0

2, x
0
3) = u(x0

1, x
0
2, x

0
3)− u(x0

1, x
0
2, x

0
3) = 0 θ1

2 + 0 θ2
2 + 0 θ3

2 + 0 θ4
2,

u2(x2
2) = u2(x1

2, x
0
3) = u(x0

1, x
1
2, x

0
3)− u(x0

1, x
1
2, x

0
3) = 0 θ1

2 + 0 θ2
2 + 0 θ3

2 + 0 θ4
2,

u2(x3
2) = u2(x0

2, x
1
3) = u(x0

1, x
0
2, x

1
3)− u(x0

1, x
0
2, x

0
3) = −1 θ1

2 + 0 θ2
2 + 1 θ3

2 + 0 θ4
2,

u2(x4
2) = u2(x1

2, x
1
3) = u(x0

1, x
1
2, x

1
3)− u(x0

1, x
1
2, x

0
3) = 0 θ1

2 − 1 θ2
2 + 0 θ3

2 + 1 θ4
2.

The coefficients Cxj specify which basic outcomes are involved in defining the subutility val-

ues. In this example, Cx3
2

= C[3, :] = [−1, 0, 1, 0].

We can notice that in the example above, the sum of the coefficient vector values is zero

(except for factor F1, when the entries sum up to 1). In fact, it is a general result.

Observation 3.6 The rows of coefficient matrices Cj sum up to 0, for j ≥ 2:

∑
k

Cj[r, k] = 0, for all j ≥ 2, and all indices 1 ≤ r ≤ Nj.

The coefficient matrix C1 is an identity matrix.

Proof This result follows directly from Eq. 3.14 and Observation 3.3. For j ≥ 2, the sum of all

coefficients in front of the basic outcomes on the first line of Eq. 3.14 is 0 (see Observation 3.3).

Therefore, the sum of all coefficients on line 3 (and 4) of Eq. 3.14 must also be 0. When j = 1,

u1(xr1) = u(b1,r) = θr1. Therefore, C1[r, r] = 1 for all indices r, while all other entries are 0.

Thus, C1 is an identity matrix. �

3.2.3 Local value functions

Additive models

Additive utilities facilitate not only representation, but also elicitation of user preferences,

partly because utility function parameters can be assessed using almost exclusively local queries.

Local queries ask a user for the strength of preference over each attribute in isolation; the values
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of other attributes are, because of independence, irrelevant. As we saw in Section 2.1.3, any

additive utility function can be written in a form where an attribute subutility ui is a product of

local value functions (LVFs) vi (normalized to the [0,1] interval) and scaling constants λi (all

positive, and summing up to 1) (Eq. 2.15):

u(x) =
N∑
i=1

ui(xi) =
N∑
i=1

λivi(xi).

This simple factorization separates the representation of preferences into two components:

“local” and “global.” Since we can define LVFs independently of other attributes, we can

also assess them independently using local queries involving only the attribute in question.

LVFs can be defined using local lotteries that involve only a single attribute: vi(xi) = p,

where p is the probability at which the user is indifferent between two local outcomes xi and

〈p, x>i ; 1− p, x⊥i 〉, ceteris paribus.

Because of the interdependence of the values of local configurations across different fac-

tors, the separation of preference representation into local and global components for GAI

models is more involved. Below, we demonstrate how we can confer the benefits of local

structure upon the more expressive GAI utility models.

Local values in GAI models

The parameterized GAI representation u(x) =
∑M

j=1

∑Nj
k=1C

k
xj

θkj has many advantages.

The structure coefficients can be computed if the GAI factor decomposition is known, and

the parameters θkj have a semantically sound interpretation: they represent utilities of basic

outcomes bj,k. However, basic outcomes are global outcomes, and therefore θkj are global

parameters. As with additive utilities, we would like to exploit the local preference structure to

facilitate elicitation. Our goal is to extend the local value functions to GAI utilities.

First, a few more definitions. Let bj,> be the best outcome in Bj and bj,⊥ be the worst

outcome in Bj . We will refer to them as top and bottom anchors for factor Fj .
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Definition 3.4 (Top and bottom anchors) A global basic outcome bj,> is the top anchor for

factor Fj if bj,> � x[Ij], ∀x ∈ X. A global basic outcome bj,⊥ is the bottom anchor for factor

Fj if bj,⊥ � x[Ij], ∀x ∈ X.

We denote the utility of the top anchor as θ>j = u(bj,>), and utility of the bottom anchor as

θ⊥j = u(bj,⊥). Then, by using the expected utility theorem 2.8, the utility of any basic outcome

in Bj can be written as an affine combination of anchor utilities:

θkj = pkj θ
>
j + (1− pkj ) θ⊥j

⇐⇒

bj,k ∼ 〈pkj ,bj,>; 1− pkj ,bj,⊥〉. (3.16)

Here, pkj is the probability at which one would be indifferent between the outcome bj,k and the

lottery in which the top anchor bj,> is realized with probability pkj , and the bottom anchor bj,⊥

is realized with probability 1− pkj .

By plugging θkj = pkj θ
>
j + (1− pkj ) θ⊥j into Eq. 3.14, we get

uj(x
r
j) =

Nj∑
k=1

Cj[r, k] θkj

=

Nj∑
k=1

Cj[r, k] (pkj θ
>
j + (1− pkj ) θ⊥j )

=

Nj∑
k=1

Cj[r, k] pkj θ
>
j +

Nj∑
k=1

Cj[r, k] θ⊥j −
Nj∑
k=1

Cj[r, k] pkj θ
⊥
j

= (θ>j − θ⊥j )

Nj∑
k=1

Cj[r, k] pkj + θ⊥j

Nj∑
k=1

Cj[r, k].

In the previous Observation 3.6, we showed that
∑Nj

k=1 Cj[r, k] is always 0, unless j = 1, in

which case it is 1. Therefore, we can rewrite the GAI subutility equations as follows:

u1(xr1) = (θ>1 − θ⊥1 ) prj + θ⊥1 ,

uj(x
r
j) = (θ>j − θ⊥j )

Nj∑
k=1

Cj[r, k] pkj . (3.17)
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(a) GAI graph (b) CA-independence graph

Figure 3.6: Conditioning set {X2, X6} for factor F4 in a GAI graph (a) and a CA-independence graph
(Bacchus and Grove, 1995) (b).

We will later show that the probabilities pkj have a local interpretation, which will enable us

to define LVFs for GAI models. But first, we introduce factor conditioning sets.

Factor conditioning sets

For each factor, there exists a set of attributes (outside that factor) that “shield” the influence of

all other attributes in the domain. We call that set of attributes the conditioning set. A related

concept in the factored probability models is known as the Markov blanket (Pearl, 1988).

Definition 3.5 The conditioning set Kj for factor Fj is the set of all attributes that share GAI

factors with attributes in Fj:

Kj = (
⋃

k:Fk∩Fj 6=∅

Fk) \ Fj.

The set of indices of the attributes in Kj will be denoted as IKj .

Example 3.11 Let u(x1, . . . , x7) = u1(x1, x2, x3, x6)+u2(x1, x2, x7)+u3(x2, x4)+u4(x4, x5)+

u5(x5, x6) (see Fig. 3.6). Then, the conditioning set for F4 is K4 = {X2, X6} (and IK4 =

{2, 6}), since F4 is connected to F3 and F5, and X2, X6 are all the attributes in F3 and F5 that

are not in F4 (Fig. 3.6a). Alternatively, we can consider a graph where nodes are individual

attributes, and there is an edge between two attributes if and only if they are together in some

factor. Such a graph is called the CA-independence map (where CA stands for “conditionally

additive”) by Bacchus and Grove (1995). In this graph, the conditioning set for the factor Fi
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is the smallest set of nodes that block all paths between the factor Fi and other nodes (see

Fig. 3.6b). The GAI graph can be viewed as a clique graph of the CA-independence map.

GAI local value theorem

A conditioning set separates a GAI factor from all other attributes and allows us to define

semantically valid local preference relations over factor instantiations.

Theorem 3.2 (GAI local value theorem)

Let F1, . . . , FM be the factors of a GAI decomposition of some utility function (i.e., F1, . . . , FM

satisfy the GAI condition). For any j ∈ {1, . . . ,M}, after an appropriate rearrangement of

indices, any outcome x ∈ X can be written as (xj, zj,y), where xj ∈ Xj instantiates attributes

in factor Fj , zj ∈ XIKj
is a suboutcome in its conditioning set, and y is an instantiation of all

remaining attributes. Then,

(xj, zj,y) ∼ 〈p, (x>j , zj,y); 1− p, (x⊥j , zj,y)〉 =⇒

(xj, zj,y
′) ∼ 〈p, (x>j , zj,y′); 1− p, (x⊥j , zj,y′)〉, for any y′ ∈ X(Ij∪IKj )C .

Therefore, by definition of a local lottery,

(xj, zj) ∼ 〈p, (x>j , zj); 1− p, (x⊥j , zj)〉.

As long as the attributes in the conditioning set Kj are fixed, no other attributes influence

the strength of preference for local outcomes in factor Fj . We can therefore perform local

elicitation with respect to local anchors x>j and x⊥j , without specifying the levels of the com-

plementary attributes y.

Proof

By the expected utility theorem,

(xj, zj,y) ∼ 〈p, (x>j , zj,y); 1− p, (x⊥j , zj,y)〉 =⇒

u(xj, zj,y) = p u(x>j , zj,y) + (1− p)u(x⊥j , zj,y).
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We partition the set of all attributes {X1, . . . , XN} into the factor Fj , its conditioning set Kj ,

and remaining attributes Yj = (Fj ∪Kj)
C . The corresponding attribute index sets are Ij , IKj ,

and IYj .

The set Tj = {k : Fk∩Fj 6= ∅}\{j} contains indices of all factors that share some attributes

with the factor Fj (in a GAI graph, it is the set of all nodes connected to node j). By definition,

the factors indexed by Tj contain only the attributes in Fj and Kj (because Kj =
⋃
k∈Tj Fk).

All other factors Fl, with l /∈ Tj ∪ {j}, contain only atributes in Kj and Yj (Fl cannot have

attributes in Fj because then l would be in Tj , which is a contradiction).

Since u is a GAI function,

u(xj, zj,y) =

uj(xj) +
∑
k∈Tj

uk(xk)

+
∑

l /∈Tj∪{j}

ul(xl)

= uX(xIj∪IKj ) + uY (xIKj∪IYj )

= uX(xj, zj) + uY (zj,y),

since xj ∈ Xj , zj ∈ XIKj
, and y ∈ XIYj

. The domain of the subutility function uX comprises

all the attributes in Fj and its conditioning set Kj , whereas the domain of uY consists of

attributes in Kj and Yj . Therefore, the following holds:

u(xj, zj,y) = p u(x>j , zj,y) + (1− p)u(x⊥j , zj,y)⇐⇒

uX(xj, zj) + uY (zj,y) = p (uX(x>j , zj) + uY (zj,y)) + (1− p) (uX(x⊥j , zj) + uY (zj,y))⇐⇒

uX(xj, zj) = p uX(x>j , zj) + (1− p)uX(x⊥j , zj)⇐⇒

(xj, zj) ∼ 〈p, (x>j , zj); 1− p, (x⊥j , zj)〉. �

Local value functions

Theorem 3.2 tells us that the utility of any suboutcome xj (in factor Fj) can be expressed

locally in terms of the two anchor levels, assuming fixed values zj ∈ Kj of attributes in the

conditioning set: (xj, zj) ∼ 〈p, (x>j , zj); 1 − p, (x⊥j , zj)〉. This holds for any instantiation of
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the conditioning set. Assuming a fixed instantiation of the conditioning set, we can now define

a local value function for GAI utilities.

Definition 3.6 (Local value function) A local value function (LVF) vj is a function on Xj

such that

vj(xj) = p

if and only if

(xj, z
0
j) ∼ 〈p, (x>j , z0

j); 1− p, (x⊥j , z0
j)〉,

for all xj ∈ Xj , and all attributes in the conditioning set for factor Fj fixed at the reference

level z0
j ∈ XIKj

. The range of the LVF vj is constrained to the [0, 1] interval, with vj(x>j ) = 1,

and vi(x⊥j ) = 0.

GAI representation using local value functions

From the definition of the local value function, we can see that vj(xkj ) = pkj implies (xkj , z
0
j) ∼

〈pkj , (x>j , z0
j); 1 − pkj , (x

⊥
j , z

0
j)〉. By definition of the local lottery, vj(xkj ) = pkj also implies

(xkj , z
0
j ,y

0) ∼ 〈pkj , (x>j , z0
j ,y

0); 1−pkj , (x⊥j , z0
j ,y

0)〉, where we chose to set the complementary

attributes to y0. The outcomes (x>j , z
0
j ,y

0) = bj,> and (x⊥j , z
0
j ,y

0) = bj,⊥ are the two anchor

outcomes of factor Fj , while the outcome (xkj , z
0
j ,y

0) = bj,k is the kth basic outcome of factor

Fj . Thus, the local value function vj(xkj ) calibrates the relative utility of bj,k with respect to

the two anchor outcomes (see Eq. 3.16):

bj,k ∼ 〈pkj ,bj,>; 1− pkj ,bj,⊥〉

⇐⇒

bj,k ∼ 〈vj(xkj ),bj,>; 1− vj(xkj ),bj,⊥〉

⇐⇒

θkj = vj(x
k
j ) θ

>
j + (1− vj(xkj )) θ⊥j , (3.18)
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where, as before, θkj = u(bj,k) denotes the utility of the kth basic outcome in factor Fj . Rewrit-

ing Eq. 3.17, we get:

u1(xr1) = [u(b1,>)− u(b1,⊥)] vj(x
r
j) + u(b1,⊥),

uj(x
r
j) = [u(bj,>)− u(bj,⊥)]

Nj∑
k=1

Cj[r, k] vj(x
k
j ), (3.19)

and, therefore,

u(xr) = θ⊥1 +
M∑
j=1

[u(bj,>)− u(bj,⊥)]

Nj∑
k=1

Cj[r, k] vj(x
k
j )

 .
Since θ⊥1 is a constant, we can use a simpler equivalent utility:

u(xr) =
M∑
j=1

[u(bj,>)− u(bj,⊥)]

Nj∑
k=1

Cj[r, k] vj(x
k
j )

 . (3.20)

By contrasting this local GAI parameterization with the previous global parameterization

(Eq. 3.15)

u(xr) =
M∑
j=1

Nj∑
k=1

Cj[r, k] u(bj,k),

we can observe that the global representation requires knowledge of utilities of all basic out-

comes bj,k (which are global outcomes), while the local representation depends only on local

value functions of local configurations xkj and a much smaller set of utilities of global outcomes

bj,> and bj,⊥ (viz., the 2M anchor utilities).

Both the local and global parameterizations of GAI utilities are equivalent. The local pa-

rameterization (Eq. 3.20) shows that a GAI model, similar to simple additive utility functions,

can be additively decomposed into factors which are the product of global parameters (weights)

λj = u(bj,>)− u(bj,⊥) and a linear combination of LVF parameters vj(xkj ):

u(xr) =
M∑
j=1

λj Nj∑
k=1

Cj[r, k] vj(x
k
j )

 . (3.21)
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Example 3.12 We illustrate the two GAI representations with the simple non-trivial two-

factor, three-attribute GAI model with I1 = {1, 2} and I2 = {2, 3}:

u(x, y, z) =u(x, y, z0) + (u(x0, y, z)− u(x0, y, z0))

=[u(x>, y>, z0)− u(x⊥, y⊥, z0)] v1(x, y)+

[u(x0, y>, z>)− u(x0, y⊥, z⊥)] (v2(y, z)− v2(y, z0)).

=λ1 v1(x, y) + λ2 (v2(y, z)− v2(y, z0)).

Relation to additive utilities

GAI local value functions generalize the concept of local value functions for additive utilities.

Let’s consider the GAI expression (Eq. 3.20):

u(xr) =
M∑
j=1

[u(bj,>)− u(bj,⊥)]

Nj∑
k=1

Cj[r, k] vj(x
k
j )

 .
In the additive utility case, with no overlapping factors, Cj[r, k] = 1 if r = k, and 0 other-

wise (for all factors, or attributes, Fj). Furthermore, following a common practice for additive

utilities, let’s assume that the reference outcome is the worst possible outcome, i.e., x0 = x⊥,

and utility function u is normalized to the [0, 1] interval. Therefore, bj,⊥ = x⊥ and u(bj,⊥) = 0

for all j:

u(xr) =
M∑
j=1

u(bj,>)vj(x
r
j) =

M∑
j=1

λjvj(x
r
j),

which is a familiar expression for additive utilites (see Eq. 2.21).

3.2.4 Summary

In the previous sections, we have introduced two new GAI model representations. The first one

(Eq. 3.15) defines the utility of any outcome x ∈ X as linear combination of basic outcome

utilities θkj :

u(x) =
M∑
j=1

Nj∑
k=1

Ck
xj
θkj (3.22)
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(θkj = u(bj,k) is a parameter defined as the utility of the basic outcome bj,k). Such parameters

are global, since we need to know utilities of global basic outcomes to assess them.

The second representation uses mostly local LVF parameters vkj = vj(x
k
j ), except for the

2M global parameters θ>1 , θ
⊥
1 , . . . , θ

>
M , θ

⊥
M (Eq. 3.20):

u(x) =
M∑
j=1

[θ>j − θ⊥j ]

Nj∑
k=1

Ck
xj
vkj

 . (3.23)

LVF parameters are local, since they are defined as the LVFs of local factor outcomes. To

assess them, we only need to consider attributes in the relevant factor and its conditioning set.

Since structure coefficients Cj are fixed given the GAI factor decomposition, a GAI utility

function is fully determined by either (a) the global parameters {θ1
1, . . . , θ

k
j , . . . , θ

NM
M }; or (b)

2M global parameters {θ>1 , θ⊥1 , . . . , θ>M , θ⊥M} and the local LVF parameters {v1
1, . . . , v

k
j , . . . , v

NM
M }.

In both representations, the number of parameters is equal to the number of all factor configu-

rations:

|{θ1
1, . . . , θ

k
j , . . . , θ

NM
M }| = |{v

1
1, . . . , v

k
j , . . . , v

NM
M }| =

M∑
j=1

|Xj|.

Global GAI parameters and local LVF parameters are related:

θkj = vkj θ
>
j + (1− vkj ) θ⊥j .

Therefore, information about local parameters can be used to assess global parameters as well.

In the following section, we describe several practical query types that provide information

about local and global GAI utility parameters.

3.3 Queries for eliciting GAI model parameters

Previous elicitation procedures for GAI models relied on full outcome queries which circum-

vent the problem of local elicitation and global calibration issues. Such semantically sound

procedures were implicitly described by Fishburn (1967b); more recently, Gonzales and Perny

(2004) suggested an explicit elicitation strategy that uses direct global queries. However, by
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resorting to full outcome queries, we lose some of the advantages of additive models and fail

to exploit the decomposition of utility functions during the elicitation process.

In interactive elicitation settings, the types of queries we pose to the user impacts not only

the difficulty or accuracy of user responses, but also directly relates to the modeling and com-

putational complexity of a decision problem. Each response to a query adds an additional

constraint to the set of constraints that define the feasible utility space. The shape and structure

of that space in turn influences how hard it is to compute an optimal decision or a good elic-

itation policy. Queries that exploit structure in user preferences also make it easier to define

tractable decision and elicitation models. In multiattribute settings, local queries only involve

a (usually small) subset of all attributes; the values of remaining attributes do not matter, as

long as they stay the same. In contrast, queries that ask a a user to consider (usually, compare

or evaluate) full outcomes, are global queries. Global queries, if involving more than a few

attributes, are much harder to assess. In general, we would like to minimize the number of

arbitrary global queries in an elicitation process.

This section introduces several types of GAI queries that can be employed during elicitation

of GAI utility parameters in both Bayesian and strict uncertainty settings. We focus on queries

that are well-defined semantically, easy to explain to non-expert users and relatively simple to

answer. We omit direct queries that ask the user for the exact utility of some (local or global)

outcome,1 since they are in most cases too difficult for a user to answer accurately (Keeney and

Raiffa, 1976), and concentrate instead on cognitively simpler bound and comparison queries.

Queries are further distinguished by the type of outcomes involved (local or global).

3.3.1 Local queries

Local queries involve only a small subset of all attributes, namely attributes in some GAI factor

and the attributes in the factor’s conditioning set; the values of the remaining attributes do not

1Such a query could also be recast in a form that asks about the probability p at which the user would be
indifferent between some outcome x and the lottery 〈p,x>; 1− p,x⊥〉.
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have to be taken into consideration. We use two types of local queries: comparison and sorting

queries, and bound queries.

3.3.1.1 Local comparison queries (LCQs)

A comparison query asks the user to compare two outcomes and select the more preferred one.

In a local comparison query (LCQ), both outcomes are local outcomes and belong to the same

factor; in addition, the user is asked to assume that the attributes in the factor’s conditioning

set are fixed at reference levels. A sample query would be: “Assume that the attributes in Kj

are fixed at reference levels. Would you prefer the local outcome xij to the local outcome xkj ,

ceteris paribus?” If the answer is “yes”, then vj(xij) ≥ vj(x
k
j ); if “no”, then vj(xij) < vj(x

k
j ).

Responses to LCQs impose linear constraints on the GAI parameters θkj from our standard

GAI model u(x) =
∑M

j=1

∑Nj
k=1 C

k
xj
θkj (Eq. 3.15). To see this, first, from Eq. 3.18, we derive

a relationship between LVFs and GAI parameters:

θkj = vj(x
k
j ) θ

>
j + (1− vj(xkj )) θ⊥j

⇐⇒

vj(x
k
j ) =

θkj − θ⊥j
θ>j − θ⊥j

. (3.24)

A “yes” response leads to:

vj(x
i
j) ≥ vj(x

k
j ) ⇐⇒

θij − θ⊥j
θ>j − θ⊥j

≥
θkj − θ⊥j
θ>j − θ⊥j

⇐⇒ θij ≥ θkj .

Similarly, a “no” response imposes the constraint θij < θkj .

Fig. 3.7 shows an example of the local comparison query used in the UTPREF recommen-

dation system (which will be discussed in detail in Chapter 6).

3.3.1.2 Local sorting

Instead of asking a user to consider only two outcomes, we can present an interface which

allows one to sort a list of outcomes in order of decreasing (or increasing) preference. Sorting
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Figure 3.7: A local comparison query used in the UTPREF recommendation system. The outcomes
in this domain are rental apartments in Toronto, defined by ten attributes, such as rental
price, building type, number of bedrooms, and others. In this local comparison query, a
user is asked to consider two local outcomes and select the better option. In this case, the
two local outcomes are Toronto East, House and Scarborough, Basement, defined by
the instantiation of Area and Building type attributes in the first factor. The conditioning
set of the first factor consists of the Number of bedrooms attribute, which is set to the
reference value 2 bedrooms, distinguished by the grey font color. In an LCQ query, the
user does not have to consider the values of other attributes.

Figure 3.8: A local sorting interface used in the UTPREF recommendation system. All local outcomes
belong to a factor with Housing type and Number of bedrooms attributes. Notice that the
Area attribute, which is the local conditioning set, is fixed at the same reference value for all
outcomes (users are alerted to this fact elsewhere on the screen).
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Figure 3.9: A local bound query used in the UTPREF recommendation system. The scale is 0 to 100.
Here, the user has indicated that the value of the Toronto East, House outcome is some-
where between 0 and 50 by dragging the outcome in question to the lower bin. The con-
ditioning set attribute Number of bedrooms is set to its reference value 2 bedrooms and is
distinguished by the grey font color. The user can also adjust the query “boundary” (in this
case 50) by moving the slider to provide tighter or looser constraints if they feel comfortable
doing so.

a list of factor outcomes determines all pairwise relationships between factor outcomes (i.e., it

is equivalent to asking a large set of pairwise LCQs). In addition to the list of local outcomes,

the user is asked to assume that the attributes in the conditioning set are fixed at reference

levels. If the number of items in the list is L, the resulting order imposes O(L2) pairwise

comparison constraints on the GAI parameters.

Fig. 3.8 shows an example of the local sorting interface used in the UTPREF system.
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3.3.1.3 Local bound queries (LBQs)

A bound query asks the user to consider a single outcome, and decide whether its value is

greater or less than some specified bound b. In a local bound query (LBQ), the outcome is a

local factor outcome xij whose LVF vj(x
i
j) is between 0 and 1 (where 0 is the LVF value of

the worst factor outcome x⊥j and 1 is the value of the best factor outcome x>j ). One way of

asking LBQs relies on the standard lottery semantics to calibrate the value of xij with respect

to x⊥j and x>j : “Assume that the attributes in Kj are fixed at reference levels. Would you prefer

the local outcome xij to a lottery 〈b,x>j ; 1 − b,x⊥j 〉, ceteris paribus?” If the answer is “yes”,

vj(x
i
j) ≥ b; if “no”, then vj(xij) < b. The bound b is a probability. Such a binary (yes/no) LBQ

differs from a direct local standard gamble query since we do not ask the user to choose the

indifference level b, only to bound it.

A practical approximation of the probabilistic semantics can be achieved by asking the user

to simply consider the outcome xij on a scale from 0 to 1 (or 0 to 100), where 0 corresponds to

the worst local outcome x⊥j and 1 corresponds to the best outcome x>j , and specify if the value

of xij is greater or less than the bound b (of course, as in other local queries, the attributes in

the conditioning set are assumed fixed at reference values). Such non-probabilistic LBQs are

arguably easier to explain and possibly easier to answer. We use them in the UTPREF system

(see Fig. 3.9 for a sample screenshot), and evaluate them in more detail in Chapter 6.

A response to an LBQ imposes a linear constraint that ties together three different GAI

utility parameters:

vj(x
i
j) ≥ b ⇐⇒

θij − θ⊥j
θ>j − θ⊥j

≥ b

⇐⇒ θij − θ⊥j ≥ b(θ>j − θ⊥j )

⇐⇒ θij ≥ b(θ>j − θ⊥j ) + θ⊥j

⇐⇒ θij − bθ>j − (1− b)θ⊥j ≥ 0. (3.25)
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3.3.2 Global queries

Global queries ask a user to consider preferences over full outcomes. We consider three types

of global queries: anchor bound, anchor comparison and global comparison queries.

In certain domains, such as renting an apartment or choosing a travel package, outcomes

have an associated price, measured in monetary units. Price plays a critical role in product

choice, and is typically distinguished as an attribute. We make the standard assumption of

quasilinear utility in which, overloading u, the utility u(x, p) of an outcome x obtained at

price p is u(x, p) = αu(x) − p. Here u(x) is the price-independent utility of x and α is a

valuation factor that adjusts u for currency. For quasilinear utilities, we can elicit strength of

preference directly in terms of “willingness to pay,” rather than in terms of lotteries between

global outcomes (Engel and Wellman, 2007). Our global queries work in both lottery and

willingness-to-pay settings.

3.3.2.1 Anchor bound queries (ABQs)

Anchor bound queries (ABQs) involve global factor anchors bj,> and bj,⊥, i.e., the best and

worst outcomes with all attributes outside the factor (not just the conditioning set) fixed at their

reference levels. The user is asked to specify whether the anchor utility θ>j = u(bj,>) is greater

than the specified bound b (similarly for bj,⊥). While such global bound queries could involve

arbitrary outcomes, by limiting the queries to anchor outcomes we can arguably make such

queries easier to answer, since most attributes (i.e., attributes outside the given factor) are fixed

at reference levels and the attributes inside the factor are fixed to either best or worst levels.

Bound queries allow us to impose constraints on parameters θ>j and θ⊥j that feature promi-

nently in the local GAI parameterization u(xr) =
∑M

j=1

[
(θ>j − θ⊥j )

∑Nj
k=1 Cj[r, k] vj(x

k
j )
]

(Eq. 3.20).

If we use standard lottery semantics, we can employ the bound b as the probability that

calibrates the utility of bj,> and the standard lottery involving the worst possible outcome x⊥

and the best possible outcome x>. A sample ABQ would be: “Consider the basic outcome
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Figure 3.10: An anchor bound query used in the UTPREF recommendation system. The user is simply
asked “Would you be willing to pay $1150 for the specified apartment?” The apartment is
a top anchor for a factor with Area and Housing type attributes. All the attributes outside
the factor are set to their reference values (identified by their grey font).
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Figure 3.11: A global comparison query (with price) used in the UTPREF recommendation system.
Given two outcomes, the user is simply asked to select the better option. Attributes that are
the same for both outcomes are presented in black font, to aid the user in the comparison
of the outcomes.

bj,>, where attributes in factor Fj are set to their best values, and other attributes are fixed at

reference levels. Would you prefer bj,> to a lottery 〈b,x>; 1− b,x⊥〉?” A “yes” response gives

u(bj,>) ≥ b, and therefore θ>j ≥ b. If response is “no”, θ>j < b. An analogous query exists for

the “bottom” anchor bj,⊥.

Alternatively, in appropriate domains, a monetary scale can be used to calibrate global

outcome utilities. Assuming α = 1, in u(x, p) = αu(x) − p, a sample query would be

“Consider the basic outcome bj,>, where attributes in factor Fj are set to their best values,

and other attributes are fixed at reference levels. Would you be willing to pay $b or more for

this outcome?” As before, “yes” response would imply θ>j ≥ b, and a “no” response θ>j < b.

Fig. 3.10 shows a screenshot of an ABQ used in the UTPREF recommendation system.

3.3.2.2 Global comparison queries (GCQs and GCQPs)

Global comparison queries (GCQs) and global comparison queries with price (GCQPs) ask

a user to compare two arbitrary outcomes x and y, either taking into account their price at-
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tributes px and py (GCQP) or ignoring them (GCQ). As long as the user can account for all the

differences in attribute values (since for arbitrary outcomes, all attributes might be different),

GCQs are simple and intuitive queries. They can be useful in applications where the number

of attributes is not large. As we will discuss in Chapters 5 and 6, global comparison queries are

very effective if the two outcomes are “current solution” outcomes, resulting from the minimax

regret solution. An example GCPQ used in the UTPREF system is shown in Fig. 3.11.

As with all the queries discussed in this section, a response to a global comparison query

imposes linear constraints on GAI parameters, potentially constraining many parameters at

once:

(x, px) � (y, py) ⇐⇒ u(x, px) ≥ u(y, py)

⇐⇒
M∑
j=1

Nj∑
k=1

Ck
xj
θkj − px ≥

M∑
j=1

Nj∑
k=1

Ck
yj
θkj − py

⇐⇒
M∑
j=1

Nj∑
k=1

(Ck
xj
− Ck

yj
) θkj ≥ px − py. (3.26)

Since Ck
xj

, Ck
yj

, px and py are known, the resulting inequality is a linear constraint on GAI

parameters θkj . For GCQ queries, where the price attribute is not considered, we can assume

that px = py.

3.3.2.3 Anchor comparison queries (ACQs)

A particular form of GCQ is the anchor comparison query (ACQ), in which both outcomes

to be compared are either top or bottom anchors for some (different) factors. ACQs are likely

easier to understand because, unlike general GCQs, most attributes are fixed at reference levels,

which are stable and salient. Responses to ACQs lead to linear constraints that involve only

two GAI parameters (whereas responses to general GCQs or GCPQs tie together multiple

parameters):

bj,> � bk,> ⇐⇒ θ>j ≥ θ>k . (3.27)
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In the UTPREF system, anchor queries are visually similar to GCPQ queries (Fig. 3.11),

with the exception of the price attribute.

3.4 Conclusion

3.4.1 Related work

Most previous work on utility elicitation traditionally assumed additive utility functions, which

require strong preferential independence assumptions. Despite such limitations of additive

models, elicitation (and even representation) of more flexible utility models, such as GAI, is a

relatively new research area.

Decision-theoretic foundations

The GAI utility model was introduced in the 1960’s by Fishburn (1967b, 1970). Although

a known utility model within the decision analysis community (Keeney and Raiffa, 1976),

it was rarely (to our knowledge) used in practical applications. Bacchus and Grove (1995)

reintroduced the model to the AI community, by highlighting the similarities between compact

representations of probability models, such as Bayesian networks, and GAI models in the

utility domain. More recently, the analogy is further explored by Brafman and Engel (2009,

2010) by equating reference utilities with marginal probabilities.

Representation, optimization, and elicitation

In the last decade, GAI utility models have gained popularity within the AI community. Ear-

lier work emphasizes user preference representation, rather than elicitation. Chajewska et al.

(2000) introduce a real-life prenatal testing domain with five attributes, and discuss a possi-

ble GAI decomposition of preferences over the attributes. Hovewer, the Bayesian elicitation

framework presented in the paper relies on a flat (not factored) utility representation, with direct

utility queries over full outcomes. A related paper (Chajewska and Koller, 2000) uses the GAI
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framework to estimate a probabilistic density function over utilities from a database of known

utility functions (this approach will be discussed in more detail below); again, elicitation of

individual utilities is not considered. More recently, there is renewed interest in optimization

and aggregation of fully specified GAI preferences (Gonzales, Perny, and Queiroz, 2006, 2008;

Dubus, Gonzales, and Perny, 2009a,b,c); however, optimization only becomes a bottleneck in

relatively large domains with complex dependencies among GAI factors.

GAI representation of user preferences is a central model in the work of Boutilier et al.

(2001) and Boutilier et al. (2003b) on minimax regret-based outcome optimization with in-

completely specified utility functions. The subsequent extensions of this approach (Boutilier

et al., 2001, 2005, 2006) focus on elicitation of GAI utilities, but without recognition of the

decision-theoretic semantic issues of local queries.

Gonzales and Perny (2004) are one of the first to acknowledge the difficulties of GAI utility

elicitation and provide a semantically sound elicitation procedure. Their approach, however,

relies on using global queries with full (rather than local) outcomes, thus skirting the problem

of local elicitation and global calibration. By resorting to full outcome queries, we lose some

of the advantages of additive models and fail to exploit the decomposition of utility functions

during the elicitation process (Braziunas and Boutilier, 2005).

Engel and Wellman (2007, 2010) a develop an iterative multiattribute auction protocol in

which trader preferences are specified using GAI utility models. The traders’ preferences are

acquired through their bids on GAI factor instantiations.

Structure assessment

One assumption that we make in this thesis is that a user’s utility function structure is known,

or can be approximated well by a domain expert. Of course, such an assumption is not always

realistic, since preferential dependencies between attributes can vary considerably from user

to user. Ideally, an elicitation process would combine assessing preference structure (i.e., de-

termining what sets of attributes are additively independent) with the acquisition of numerical
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utility parameter values. The process would be optimized so that the user is asked only relevant

questions about preferential independence between certain sets of attributes.

Solving such a problem is a difficult task. This is one reason that elicitation and verification

of GAI model structure has not received adequate attention in the research literature (apart from

early decision analysis texts by Fishburn (1970); Keeney and Raiffa (1976)). We mention the

few attempts to address the issue.

Chajewska and Koller (2000) tackle the issue of automatic GAI structure discovery from

data. They assume a database of full explicit utility functions (with possibly missing values),

and present a framework for a Bayesian learning (using EM) of a Gaussian mixture model,

where mixture components correspond to user subpopulations (types) with the same GAI util-

ity structure. If the component structures are not fixed beforehand, the best-fitting structures

are found by a greedy hill-climbing search algorithm over possible GAI factorizations. The

search operators can add or subtract variables from factors, or introduce new factors with new

variables.

A conceptually similar approach of using utility function values as data points, and then

trying to find the best GAI structure that fits the data, is used by Engel and Wellman (2008b,

2010) to empirically evaluate the benefits of more flexible GAI models versus simple additive

models. Both settings, however, are quite different from ours (although in some domains, the

learning approach is complementary), where the goal would be to elicit the structure from indi-

vidual users by posing structure queries about utility independencies between sets of attributes.

Baqui (2007) sets out to test whether GAI factors correspond to groupings of domain at-

tributes according to their association with fundamental objectives. Fundamental objectives

are higher-order additively-independent objectives that subsume domain attributes, according

to the value-focused thinking paradigm of Keeney (1992). The task of specifying how domain

attributes fulfill a user’s fundamental objectives is relatively straightforward. The goal is to

see whether the attribute factors induced by fundamental objectives satisfy the independence

assumptions of a GAI model derived from the value tree. The results from a user study with
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a real-estate domain are negative, showing that the concepts of fundamental objectives and

generalized additive independence are orthogonal.

Finally, Brafman and Engel (2009, 2010) attempt to provide a principled way for struc-

ture elicitation by imposing directional constraints on a GAI graph, such that (by analogy to

Bayesian networks) a node is conditionally directionally independent (CDI) from its ancestors

given its parents.1 The building of a directional network depends on the order of attributes, and

the ability of a user to identify previous attributes (nodes) as parents of a current node. Thus,

in the end, the structure elicitation burden is transfered to the user (by making it a structure

specification problem), and some of the main issues in structure utility elicitation still remain

the area for future research.

3.4.2 Contributions

The main contribution of this chapter is the presentation of a locally parameterized GAI model

that, together with appropriate types of queries introduced in Section 3.3, can be used for

effective and decision-theoretically sound elicitation of GAI utilities.

To design proper elicitation techniques for GAI models, we first have to solve the problem

of subutility function semantics. Unlike additive models, GAI models require much more care

in calibration because of the possible overlap of factors (sharing of attributes). If factors over-

lap, there are infinitely many valid decompositions of the same utility function in which the

subutility functions vary considerably (i.e., not simply through some positive affine transfor-

mation). It is quite possible that the apparent “local preferences” for factor instantiations can

be reversed in two different valid representations. Our identification of this problem (Braziunas

and Boutilier, 2005) is the first contribution of the chapter, described in Section 3.2.1.

Our solution to this problem rests on using Fishburn’s original canonical representation of

subutility functions (Fishburn, 1967b) as a basis for decision-theoretically sound representation

and elicitation of GAI utilities. In Section 3.2, we introduce a parameterized representation

1CDI is similar to utility independence, but is a weaker condition.
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of GAI utilities (Eq. 3.15), analyze its properties, and provide a graphical search algorithm

(Fig. 3.5) for computing the GAI structure parameters. In addition, our canonical GAI repre-

sentation preserves the local structure of additive models. By taking into account the condi-

tioning sets of attributes that shield the influence of other attribute values on local preferences

over factor instantiations (analogously to a Markov blanket in a probabilistic graphical model),

we generalize semantically sound local value functions for GAI models as well. As in additive

models, the LVFs calibrate local preferences relative to the best and worst factor suboutcomes,

assuming fixed values of the attributes in the conditioning set. The LVFs are local, because

they involve only attributes in single factors and their (usually small) conditioning sets.

Using our representation, GAI models can be elicited by using both local queries about

preferences over small subsets of attributes and global queries for calibration across utility

factors. In Section 3.3, we present several types of semantically sound local and global queries

that are both easy for users to understand and respond, and result in linear constraints on GAI

utility parameters. Such queries are used in elicitation procedures described in the following

chapters.

In the following Chapters 4 and 5 we consider elicitation strategies for selecting the right query

during the elicitation process. Chapter 6 describes a user study that evaluated different types

of GAI queries in terms of user-friendliness and cognitive cost in a realistic apartment search

scenario.
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Representation of uncertainty over user preferences is a foundational issue in preference

elicitation, affecting decision and query selection criteria as well as algorithmic methods for

solving the problem. When uncertainty over utilities is quantified probabilistically, Bayesian

principles can be applied to both decision making under partial utility information and elicita-

tion of user preferences.

In this chapter, we describe Bayesian preference elicitation with GAI utility functions

(Braziunas and Boutilier, 2005).

4.1 Decisions with partial utility information

In a Bayesian paradigm, utility functions are modeled as random variables drawn from a prior

distribution; so, even though the decision support system does not know the user’s exact prefer-

ences, it has probabilistic information about utility function parameters. The system’s “beliefs”

are updated using Bayes’ rule, and the value of any decision or query is estimated by taking

expectations with respect to possible user utility functions.

4.1.1 Decision criterion: maximum expected utility

In the general decision scenario that we consider in this thesis, a user (also referred to as a

decision maker) can obtain an outcome from a finite set of possible outcomes (or alternatives)

by choosing a decision from a finite set of available decisions. The effects of decisions are

possibly stochastic; therefore, each decision can be viewed as a simple lottery over possible

outcomes (see Section 2.1.2). The user has preferences over outcomes that can be represented
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by a utility function. The optimal decision is the one that has the highest expected utility of the

resulting outcomes (with the expectation taken over probabilities of decision outcomes).

In many decision scenarios with large and complex decision spaces (such as making travel

plans or choosing an apartment to rent from hundreds of available options), selecting the op-

timal decision can require a lot of time and effort on the part of the user. A decision support

system can help the decision maker by recommending a decision based on its knowledge of the

decision scenario and the available knowledge of the user’s preferences. While the set of out-

comes and available decisions are often the same for many users, preferences over outcomes

can vary substantially from user to user. To recommend good decisions for a particular decision

maker, the decision support system has to gather enough relevant information about her pref-

erences. In the following sections, we consider how to optimize the acquisition of preference

information by posing a sequence of preference queries to the user. However, even when the

decision support system has the ability to ask preference queries, obtaining the user’s complete

utility function is generally infeasible. Therefore, we first describe a model for recommending

decisions with partial preference information.

Formally, the decision scenario consists of a finite set of possible outcomes X, a finite set

of decisions D, and a normalized utility function u : X 7→ [0, 1]. Decisions can have stochastic

effects over outcomes. Each decision d ∈ D results in an outcome x ∈ X with probability

Pd(x). Thus, each decision d can be viewed a simple lottery (i.e., a discrete probability dis-

tribution) Pd over the outcome space X (see Section 2.1.2). By the expected utility theorem

(Eq. 2.8), the utility of decision d with respect to the utility function u is the expected utility of

its outcomes:

u(d) = Ex∼Pd [u(x)] =
∑
x∈X

Pd(x)u(x). (4.1)

In this chapter, we assume that the decision support system has prior beliefs about the

user’s utility function in a form of a probability distribution or density π over the space U of
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Density π over utilities U

π(u1)

π(u2)
π(u3)

Expected utility of decision d under π:
EU(d, π) = π(u1)u1(d) + π(u2)u2(d) + π(u3)u3(d) + . . .

Figure 4.1: Expected utility of a decision given density π representing utility function uncertainty.

all possible utility functions. The value of decision d given density π over U is the expected

utility of d.

Definition 4.1 (Expected utility of a decision given density over utilities) The expected util-

ity of decision d ∈ D given density π over all possible utility functions U is

EU(d, π) = Eu∼π[u(d)] =

∫
u∈U

π(u)u(d)du. (4.2)

Figure 4.1 shows a visual example of the probabilistic representation of uncertainty over user

utility functions.

The EU expression above is sensitive to positive affine transformations of utility functions.

An important precondition for representing uncertainty in terms of probability distributions

over a set of utility functions is for these functions to be extremum equivalent, i.e., share the

same best and worst outcomes (Boutilier, 2003). Extremum equivalence is sufficient to put

all utility functions on a common scale. In practice, it is quite reasonable to assume that

the decision maker has the same best and worst outcomes under any utility function. The

decision support system has to determine those outcomes before engaging in recommendation

or elicitation of further preferences.

With a probability distribution over utilities, the decision support system can use a prin-

cipled Bayesian criterion for optimal recommendations under any probability distribution π:

the optimal decision d∗ is the one that has the highest expected utility (with expectation over
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possible utility functions u):1

d∗ = arg max
d∈D

EU(d, π) = arg max
d∈D

Eu∼π[u(d)]. (4.3)

The density π can be considered as the belief state that the decision support system is in

with respect to its probabilistic knowledge about the user’s utility function. We can define the

value of being in a belief state π as the expected utility of the best decision the system can

recommend given density π.

Definition 4.2 (Maximum expected utility of a belief state) The value of belief state π is the

expected utility of the best decision given π:

MEU(π) = EU(d∗, π) = max
d∈D

EU(d, π). (4.4)

4.1.2 GAI models

4.1.2.1 Decision scenario

In the remaining chapters of this thesis (including the current one), we focus on decision sce-

narios in which

1) the outcome space X is multiattribute, that is, X = X1 × · · · × XN is the set of all

instantiations of N attributes X1, X2, . . . , XN with finite domains;

2) all decisions are deterministic: D ⊆ X;

3) user preferences are generalized additively independent, and, therefore, can be repre-

sented by a GAI utility function.

In practice, outcomes are often endowed with multiattribute structure (or can be modeled

as such). GAI utilities provide a flexible representation framework for structured preferences

over multiattribute outcomes; they are less restrictive and, therefore, more widely applicable

1Considering that the utility of a decision is the expected utility of its outcomes, Boutilier (2002, 2003) calls
this criterion the expected expected utility criterion, with double expectation over utility functions and outcomes.
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than additive utilities. All the results in this chapter can be extended to settings where decisions

have stochastic effects. We limit the set of decisions to deterministic choices to simplify the

exposition of the material in this chapter, and to maintain consistency with the decision settings

in Chapters 5 and 6, where decisions are viewed as feasible configurations or selections from a

database of multiattribute items.

With deterministic decisions, each decision d ∈ D corresponds to some feasible outcome

x ∈ XF , where XF ⊆ X is the set of all feasible (obtainable) outcomes. Following Eq. 4.2,

the value of outcome x given density π over utilities is

EU(x, π) = Eu∼π[u(x)] =

∫
u∈U

π(u)u(x)du. (4.5)

The optimal outcome x∗ has the highest expected utility (Eq. 4.3):

x∗ = arg max
x∈XF

EU(x, π) = arg max
x∈XF

Eu∼π[u(x)]. (4.6)

With deterministic actions, the value of being in belief state π is the expected utility of the best

outcome given π:

MEU(π) = EU(x∗, π) = max
x∈XF

EU(x, π). (4.7)

4.1.2.2 Notation

We provide a brief recap of notation introduced in Chapter 3. As before, we have the outcome

set X = X1 × · · · ×XN defined by instantiations of N attributes X1, X2, . . . , XN , each with

finite domains. Given an index set I ⊆ {1, . . . , N}, we define XI = ×i∈IXi to be the set

of partial outcomes (or suboutcomes) restricted to attributes indexed by I . We also assume a

collection of M attribute subsets, or factors, that cover the set of all attributes: F1 ∪ F2 · · · ∪

FM = {X1, X2, . . . , XN}. A factor FI = {Xi | i ∈ I} contains the attributes whose indices are

in the index set I ⊆ {1, . . . , N}. For a factor Fj , xIj , or simply xj , is a particular instantiation

of its attributes. The factors (and their associated sets of indices) are enumerated from 1 to M :

F1, F2, . . . , FM . To simplify the notation, we write Fj = FIj (and xj = xIj ).
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Let x0 = (x0
1, x

0
2, . . . , x

0
N) denote a special outcome in X designated as the reference out-

come (see Section 3.1.3). By using a reference outcome, any outcome x ∈ X can be “pro-

jected” to a subset space indexed by I , resulting in the outcome x[I]. For any x ∈ X, x[I] is

an outcome where attributes of x not indexed by I are clamped at the reference values.

Each factor has Nj = |Xj| local (partial) outcomes, i.e., possible instantiations of factor

attributes. A basic outcome b for factor Fj is any outcome x with attributes outside factor Fj

set to the reference level: b = x[Ij] for some x ∈ X. Each factor Fj has Nj basic outcomes,

corresponding to Nj partial outcomes of Fj . The kth basic outcome for factor Fj is denoted as

bj,k.

The GAI factors are assumed to be generalized additively independent (see Definition 3.1);

therefore, user preferences can be represented by a GAI utility function u(x) =
∑M

j=1 uj(xj)

(Theorem 3.1).

4.1.2.3 Two parametric representations of GAI utilities

In Chapter 3, we introduced two parameterized GAI model representations that rely on the

notions of GAI parameters, local value parameters, and structure coefficients. GAI parameters

(also referred to as basic outcome parameters) θkj = u(bj,k) represent utility values of basic

outcomes. We let θ ∈ Θ to denote a vector of all basic outcome parameter values (Θ is the

space of all possible GAI parameter vectors):

θ = (θ1
1, θ

2
1, . . . , θ

1
j , θ

2
j , . . . , θ

Nj
j , . . . , θNMM ).

Structure coefficients encode attribute decomposition into factors (see Section 3.2.2 for details).

For each factor Fj , Cj is a square Nj ×Nj matrix of integer coefficients, whose rows specify

the linear combination of GAI parameters defining factor subutility values. For each factor

outcome xj , Cxj is the ind(xj) row of Cj (ind(xj) is the index of the local configuration xj),

and Ck
xj

= Cj[ind(xj), k] is the kth entry in that row vector.

The first parameterization (Eqs. 3.15, 3.22) defines the utility of any outcome x ∈ X as a
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linear combination of GAI parameters:

u(x|θ) =
M∑
j=1

Nj∑
k=1

Ck
xj
θkj . (4.8)

This representation is global, in the sense that all the parameters are semantically defined with

respect to full outcomes (GAI parameters are utilities of basic outcomes, and basic outcomes

are full outcomes).

The second GAI representation uses mostly local LVF parameters. An LVF (local value

function) parameter vkj = vj(x
k
j ) denotes the local value of factor configuration xkj . Such local

value parameters can be assessed by local queries that consider only attributes in the relevant

factor and its conditioning set (see Section 3.3). The local GAI representation also uses a small

number (2M ) of global anchor parameters θ>1 , θ
⊥
1 , . . . , θ

>
M , θ

⊥
M that are necessary for utility

calibration across different factors. The global parameters θ>j = u(bj,>) and θ⊥j = u(bj,⊥) de-

fine the utilities of the best and worst basic outcomes for factor Fj . The local parameterization

of the GAI utility function (Eq. 3.20, 3.23) is as follows:

u(x|θ) =
M∑
j=1

(θ>j − θ⊥j )

Nj∑
k=1

Ck
xj
vkj

 . (4.9)

Since structure coefficients Cj are fixed given the GAI factor decomposition, a GAI util-

ity function is fully determined by either the global parameters {θ1
1, . . . , θ

k
j , . . . , θ

NM
M }, or by the

2M global parameters {θ>1 , θ⊥1 , . . . , θ>M , θ⊥M} and the local LVF parameters {v1
1, . . . , v

k
j , . . . , v

NM
M }.

Global GAI parameters and local LVF parameters are linearly related if anchor parameters are

fully known:

θkj = (θ>j − θ⊥j ) vkj + θ⊥j ,

vkj =
1

θ>j − θ⊥j
θkj −

θ⊥j
θ>j − θ⊥j

. (4.10)

Therefore, information about local parameters can be used to assess global parameters, and

vice versa.
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4.1.2.4 Uncertainty representation

With GAI models, we assume that uncertainty over utility functions is specified by probability

densities over GAI utility function parameters. Let πθ be a density over the space of GAI

parameters Θ. Then, using Eq. 4.8 and linearity of expectation, the expected utility of outcome

x ∈ X becomes:

EU(x, πθ) = Eθ[u(x|θ)] = E[
M∑
j=1

Nj∑
k=1

Ck
xj
θkj ] =

M∑
j=1

Nj∑
k=1

Ck
xj

E[θkj ]. (4.11)

Using the second GAI parameterization (Eq. 4.9), and assuming a prior distribution πv over

the space of LVF parameters vkj , the expected utility of outcome x can be written as

EU(x, πv) = E[
M∑
j=1

(u>j − u⊥j )

Nj∑
k=1

Ck
xj
vkj ] =

M∑
j=1

(u>j − u⊥j )

Nj∑
k=1

Ck
xj
E[vkj ]. (4.12)

The two settings are equivalent if anchor parameters are fully known. In such a case (see

Eq. 4.10),

E[θkj ] = (θ>j − θ⊥j )E[vkj ] + θ⊥j ,

E[vkj ] =
1

θ>j − θ⊥j
E[θkj ]−

θ⊥j
θ>j − θ⊥j

.

Situations where the local values are uncertain, but anchor utilities are fully known, have

been commonly assumed with additive utilities (Fishburn, 1964; Sarin, 1977; Kirkwood and

Sarin, 1985; Hazen, 1986; Weber, 1987; White et al., 1983, 1984; Anandalingam and White,

1993; Blythe, 2002). While somewhat restrictive, the setting allows us to use the local parame-

terization (Eq. 4.9) that is amenable to elicitation using local queries. Global anchor parameters

have to be fully assessed beforehand. This can be done by using global standard gamble queries

that involve the best and the worst outcomes x>, x⊥ (e.g., “What is the probability p for which

you would be indifferent between outcome bj,> and the lottery 〈p,x>; 1 − p,x⊥〉?”) or, in

willingness-to-pay domains, using queries that calibrate against a monetary scale (e.g., “How

much would you be willing to pay for outcome bj,>?”). A combination of global queries, in-

cluding direct, bound and comparison queries, can also be used to assess anchor parameters

(see Section 3.3).
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4.1.2.5 Optimization in GAI models

In the remainder of this chapter, we will assume that anchor parameters are known, and un-

certainty over utilities is specified by the density πv over the space of LVF parameters vkj . As

shown above in Eq. 4.12, the expected utility of outcome x is then

EU(x, πv) =
M∑
j=1

(u>j − u⊥j )

Nj∑
k=1

Ck
xj
E[vkj ].

The optimal outcome x∗ is the one with the highest expected utility. If the means E[vkj ] of LVF

parameters are known, the optimal outcome x∗ can be found in the same way as with fully

specified GAI utility functions. Let uEj (xj) = (u>j − u⊥j )
∑Nj

k=1 C
k
xj
E[vkj ]. Then,

EU(x, πv) =
M∑
j=1

(u>j − u⊥j )

Nj∑
k=1

Ck
xj
E[vkj ] =

M∑
j=1

uEj (xj).

Thus, finding the optimal outcome x∗ with uncertainty πv over LVF parameters is equivalent

to finding the optimal outcome in a fully specified GAI function uE with subutilities uEj (xj) =

(u>j − u⊥j )
∑Nj

k=1C
k
xj
E[vkj ]:

x∗ = argmax
x∈XF

EU(x, π) = argmax
x∈XF

uE(x) = argmax
x∈XF

M∑
j=1

uEj (xj). (4.13)

This optimization problem can be solved efficiently by using variable elimination (Dechter,

1996), a form of non-serial dynamic programming (Bertele and Brioschi, 1972). Consider the

following maximization problem:

max
x∈XF

u(x) = max
x∈XF

M∑
j=1

uj(xj) = max
x1

max
x2

. . .max
xN

M∑
j=1

uj(xj). (4.14)

By distributing the max operator inward over summations (using the distributive property of

the max operator) and then “eliminating” one variable at a time, the variable elimination algo-

rithm can avoid the exponential (in the number of variables) run time of the naive maximization

procedure. Variable elimination efficiency depends on the variable elimination order; its run

time is exponential in the tree width of the join tree induced by the variable elimination al-

gorithm (Lauritzen and Spiegelhalter, 1988). In many GAI decompositions the tree width is
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Initial beliefs π

Query response a1
q Query response a2

q

Updated beliefs πa
1
q Updated beliefs πa

2
q

Figure 4.2: Update of beliefs π given two possible responses to query q.

much smaller than the total number of attributes. Therefore, finding the optimal outcome in

GAI utility functions is a locally exponential procedure; if the tree width is bounded by a con-

stant, the procedure is of (pseudo)polynomial time complexity (Braziunas and Boutilier, 2005;

Boutilier et al., 2006).

4.2 Elicitation

In this section, we start by outlining the general elicitation framework that supports interac-

tion between the decision support system and the decision maker. We then describe a natural

Bayesian criterion, based on the notion of expected value of information, for selecting my-

opically optimal queries. We extend the elicitation framework to GAI utilities by assuming

that uncertainty over utilities is represented by a density over LVF parameters; we limit the

set of available queries to local bound queries. Finally, we design a tractable algorithm for

myopically optimal elicitation by adopting a mixture-of-uniforms density representation.
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4.2.1 Elicitation framework

With probabilistic knowledge of a decision maker’s utilities, a decision support system can

evaluate the expected utility of each available option and recommend the outcome with the

highest expected utility. When the system’s knowledge of the user’s preferences is limited, the

recommended outcome might be of much lower value than the optimal outcome (with respect

to the user’s true utility function). By obtaining additional preference information, the system

can improve its recommendations. We model this scenario by allowing the decision support

system to ask a series of questions about the user’s preferences; the system can use the user’s

responses to reduce its uncertainty about the user’s utility function. Formally, we assume a

finite set of available queries Q, and, for each query q ∈ Q — a set of possible user responses

(answers) Aq. Responses to queries depend on the true user utility function u, but might be

noisy. This relationship is captured by the probabilistic response model Pr(aq|u) that specifies

the probability of response aq to query q when utility function is u.

As before, we assume that the system’s beliefs about user utilities are summarized by the

probability density π over U. When the true user utility function is not fully known, the

decision support system estimates the probability of a particular response to the given query by

considering the response’s likelihood under every possible utility function:

Pr(aq|π) = Eu∼π[Pr(aq|u)] =

∫
u∈U

Pr(aq|u)π(u)du. (4.15)

A response aq to query q provides information about the true utility function and changes the

current belief state from π to πaq according to the Bayes’ rule:

πaq(u) = π(u|aq) =
Pr(aq|u)π(u)∫

u∈U
Pr(aq|u)π(u)du

. (4.16)

Figure 4.2 illustrates the update of utility function beliefs given two possible responses to a

preference query.

Elicitation of preferences takes time, imposes cognitive burden on users, and might involve

considerable computational and financial expense. Such factors are modeled by assigning each
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Input: Set of feasible outcomes XF , set of queries Q, set of query costs {cq|q ∈ Q},
sets of responses {Aq|q ∈ Q}, response model Pr(aq|u), prior beliefs π over
user utilities U, termination criteria T

Output: Recommended outcome x∗

x∗ ← argmaxx∈XF
EU(x, π)

while termination criteria T not met do
select query q
pose query q to the user
receive response aq
update the system’s beliefs to πaq according to Eq. 4.16
π ← πaq

x∗ ← argmaxx∈XF
EU(x, π)

end

Figure 4.3: A generic procedure that supports Bayesian preference elicitation through a sequence of
interactions (queries and responses) between the decision support system and the user (de-
cision maker).

query q a query cost cq.1

We can now outline the generic preference elicitation procedure. In its basic form, the

decision support system repeatedly selects a preference query from the set Q, receives a user

response, updates its current beliefs about the user’s utility function, and continues until ter-

mination criteria are met. Termination criteria depend on a specific decision scenario. Sim-

ple termination criteria include exceeding the maximum number of queries allowed, or the

cumulative cost of queries reaching some predefined threshold. More complex termination

criteria utilize the notion of expected utility loss, or regret, which is the expected (with re-

spect to π) utility difference between the optimal outcome and the recommended outcome. Let

x∗π = maxx∈XF
Eu∼π[u(x)] be the optimal outcome for belief state π. Then, the expected loss

of recommending x∗π is

Eu∼π[max
x∈XF

u(x)− u(x∗π)]. (4.17)

Expected loss is usually hard to compute exactly. However, it can be approximated by sampling

1More generally, costs could depend on the true utility function, or could be associated with responses.
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(Chajewska et al., 2000); this is what we do in the experiments in Section 4.3. The elicitation

process stops when expected utility loss falls below a certain threshold (after accounting for

query costs).

Figure 4.3 shows the generic Bayesian elicitation framework that is assumed in the remain-

der of this chapter.

4.2.2 Myopic elicitation

Our elicitation model is a sequential process whose value is determined by the expected utility

of a terminal decision and information gathering costs. Ideally, a sequential elicitation policy

takes into consideration all possible future questions and answers, and provides an optimal

tradeoff between query costs (the burden of elicitation) and the potentially better decisions the

system can recommend with additional preference information. As shown by Boutilier (2002),

computing such a policy amounts to solving a partially observable Markov decision process

(POMDP) with a continuous state space (described in Section 2.3.6.1).

Solving any POMDP is generally computationally difficult (even for flat utility models).

Therefore, we focus on suboptimal, but tractable myopic elicitation strategies. Myopic elici-

tation is driven by queries that provide highest expected value of information (EVOI), where

expectation is over possible realizations of user utility functions. By focusing on maximizing

immediate EVOI, a myopic strategy ignores the potential value of future queries. Nonetheless,

greedy strategies have been successfully used in real and synthetic domains (Chajewska et al.,

2000; Braziunas and Boutilier, 2005). We should also note that by increasing the “lookahead”

horizon, a myopic policy generally approaches the performance of a sequentially optimal pol-

icy.

Expected value of information of a preference query

The maximum expected utility of being in belief state π provides a myopic estimate of its

value, because it only considers the expected utility of the best immediate decision the system
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can recommend (Eq. 4.7):

MEU(π) = EU(x∗, π) = max
x∈XF

EU(x, π).

A response aq to query q provides information about the true utility function and changes the

decision support system’s belief state π to the new belief state πaq according to the Bayes’ rule

(Eq. 4.16). After response aq, the new belief state’s value is MEU(πaq).

To calculate the value of some query q ∈ Q, we can weigh the MEUs resulting from its

possible responses according to their likelihood (given by the response model Pr(aq|u)). The

resulting measure of query value is called the expected posterior utility (EPU) of the query.

Definition 4.3 (Expected posterior utility (EPU))

Given query q, response model Pr(aq|u), and prior beliefs over utilities π, the expected poste-

rior utility of q is

EPU(q, π) =
∑
aq∈Aq

Pr(aq|π) MEU(πaq), (4.18)

where

Pr(aq|π) = Eu∼π[Pr(aq|u)] =

∫
u∈U

Pr(aq|u)π(u)du (Eq. 4.15),

πaq(u) = π(u|aq) =
Pr(aq|u)π(u)∫

u∈U
Pr(aq|u)π(u)du

(Eq. 4.16).

EPU(q, π) is the expected utility of asking query q in belief state π. The gain in expected

utility due to asking the query q (from EU(π) to EPU(q, π)) is called the expected value of

information (EVOI) of query q.

Definition 4.4 (Expected value of information (EVOI))

Given query q, and beliefs over utilities π, the expected value of information of query q ∈ Q is

EV OI(q, π) = EPU(q, π)−MEU(π). (4.19)

By selecting queries based on their EVOI (or, equivalently, EPU), the decision support sys-

tem can implement a principled (although myopic) Bayesian elicitation procedure in which, at
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Input: Set of feasible outcomes XF , set of queries Q, set of query costs {cq|q ∈ Q},
sets of responses {Aq|q ∈ Q}, response model Pr(aq|u), prior beliefs π over
user utilities U, termination criteria T

Output: Recommended outcome x∗

x∗ ← argmaxx∈XF
EU(x, π)

while termination criteria T not met do
q∗ ← argmaxq∈QEV OI(q)− cq (Eq. 4.19)
pose query q∗ to the user
receive response aq∗
update the system’s beliefs to πaq∗ according to Eq. 4.16
π ← πaq∗

x∗ ← argmaxx∈XF
EU(x, π)

end

Figure 4.4: A myopic Bayesian preference elicitation procedure that uses a sequence of interactions
(queries and responses) between the decision support system and the user (decision maker).
The decision support system selects queries based on their expected value of information.

each step, the query with the highest value of EVOI minus query cost is asked, and the distri-

bution over utilities is updated based on user responses; the process stops when the expected

value of a decision meets some termination criteria. Figure 4.4 provides further details about

the myopic Bayesian elicitation framework.

4.2.3 GAI models

In this section, we apply the myopic Bayesian elicitation framework to elicit GAI utility model

parameters. As discussed in Section 4.1.2.4 above, we assume that uncertainty over a user’s

utility function is specified by the probabilistic prior πv over GAI local value functions (LVFs);

the factor anchors θ>1 , θ
⊥
1 , . . . , θ

>
M , θ

⊥
M are known. Let λj = θ>j − θ⊥j be the scaling coefficient

for factor Fj . We also assume that all expectations are with respect to the distribution πv:

E = Eu∼πv . As shown in Eq. 4.12, the expected utility of outcome (or configuration) x is then

EU(x, πv) = E[u(x)] =
M∑
j=1

E[uj(xj)] =
M∑
j=1

λj

Nj∑
k=1

Ck
xj
E[vkj ].

To gain more information about the user’s LVFs, we can ask appropriate local queries (see

Section 3.3). Although local comparison queries are natural and simple to answer, they are
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difficult to deal with in a Bayesian elicitation framework because there are no parametric prob-

ability distributions that remain conjugate to the prior after a response to a comparison query.

Responses to comparison queries impose “diagonal” constraints on the prior distribution. For

example, if π(v1
j , v

2
j ) were a density over two LVF parameters v1

j , v
2
j , then, after the response

yes to the comparison query q = “Do you prefer local outcome x1
j to x2

j?”, the posterior dis-

tribution would be πyesq = π(v1
j , v

2
j |v1

j ≥ v2
j ). To maintain the parametric form, πyesq would

have to be approximated by, for example, sampling from the true posterior π(v1
j , v

2
j |v1

j ≥ v2
j )

and refitting to the samples using expectation maximization (EM) or similar techniques. Bound

queries, on the other hand, impose only axis-parallel constraints on a single variable. They fit

well with certain priors, such as mixtures of truncated Gaussians or uniforms, which remain

closed under updates due to bound queries. For this reason, in this chapter we limit our query

set to local bound queries.

Local bound queries, introduced in Section 3.3.1.3, ask the user to consider a single local

outcome xrj (i.e., the rth local configuration in factor Fj), and decide whether its LVF value

vrj = vj(x
r
j) is greater or less than some specified bound b. One way of asking LBQs relies

on the standard lottery semantics to calibrate the value of xrj with respect to x⊥j and x>j (the

best and worst outcomes of factor Fj): “Assume that the attributes in the conditioning set of

factor Fj are fixed at reference levels. Would you prefer the local outcome xrj to the lottery

〈b,x>j ; 1−b,x⊥j 〉, ceteris paribus?” If the answer is “yes”, vj(xrj) ≥ b; if “no”, then vj(xrj) < b.

A practical approximation of the probabilistic semantics can be achieved by asking the user to

simply consider the outcome xrj on a scale from 0 to 1 (or 0 to 100), where 0 corresponds to

the worst local outcome x⊥j and 1 corresponds to the best outcome x>j , and specify if the value

of xrj is greater or less than the bound b (of course, as in other local queries, the attributes in

the conditioning set are assumed fixed at reference values). Such non-probabilistic LBQs are

arguably easier to explain and possibly easier to answer. Fig. 3.9 shows an example of an LBQ

used in the UTPREF recommendation system (described in Chapter 6).

An LBQ q[vrj , b] that elicits the relationship between the local value vrj and the bound b ∈
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Figure 4.5: A local bound query used in the UTPREF recommendation system. The scale is 0 to 100
(corresponding to the LVF range of 0 to 1). Here, the user has indicated that the value of the
Toronto East, House outcome is somewhere between 0 and 50 by dragging the outcome
in question to the lower bin. The conditioning set attribute Number of bedrooms is set to its
reference value 2 bedrooms and is distinguished by the grey font color.
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[0, 1] is defined by three parameters: the factor index j, the local configuration index r, and

the bound b. Its response set Aq = {yesq, noq} consists of two responses yes and no. We

use query subscripts to associate responses to queries (so yesq is response yes to query q). In

the remainder of this chapter, we assume that the set of available queries is limited to LBQs:

Q = {q[vrj , b], j = 1..M, r = 1..Nj, b ∈ [0, 1]}.

4.2.3.1 Posterior distributions

For myopically optimal elicitation, we need to find which query has the highest expected poste-

rior utility, defined as the expected (with respect to the possible responses) MEU of its updated

belief states. The two belief states that result from yes and no responses to the LBQ q[vrj , b] are

πyesq and πnoq . In this subsection, we show how to compute MEU(πyesq) and MEU(πnoq)

in GAI models under the assumption that the random variables representing local value pa-

rameters vrj are independent. This is a reasonable assumption for situations where the prior

satisfies the assumption, and elicitation process employs only LBQs (which maintain indepen-

dent posteriors). In the following subsection, we use the MEU expression to compute an LBQ’s

expected posterior utility.

For simplicity, we assume a noiseless user response model Pr(aq|u):

Pr(yesq[vrj ,b]|u) =


1, if vrj ≥ b,

0, otherwise.

Pr(noq[vrj ,b]|u) = 1− Pr(yesq[vrj ,b]|u).

The two posteriors πyesq and πnoq are (Eq. 4.16):

πyesq(u) = π(u|yesq) =
Pr(yesq|u)π(u)∫

u∈U
Pr(yesq|u)π(u)du

,

πnoq(u) = π(u|noq) =
Pr(noq|u)π(u)∫

u∈U
Pr(noq|u)π(u)du

. (4.20)
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To simplify the notation, we use Eyesq and Enoq as posterior expectation operators:

E = Eu∼πv ,

Eyesq = Eu∼πyesq ,

Enoq = Eu∼πnoq .

Due to the local nature of the bound query q[vrj , b], the posterior distribution πyesq (or πnoq )

differs from the prior distribution π only in the dimension of the LVF parameter vrj (since, due

to the independence assumption stated above, each LVF parameter is independent of the rest).

Therefore, the query only affects the expected value of the subutility uj for factor Fj , and does

not affect other factors:

EU(x, πyesq) = Eyesq [u(x)]

=
M∑
j=1

Eyesq [uj(xj)]

= Eyesq [uj(xj)] +
∑
j′ 6=j

Eyesq [uj′(xj′)]

= Eyesq [uj(xj)] +
∑
j′ 6=j

E[uj′(xj′)]. (4.21)

The expected posterior subutility Eyesq [uj(xj)] in the equation above can be decomposed

further by taking advantage of the fact that a response to a local bound query q[vrj , b] affects the

expected value of factor Fj subutilities only through the change in the expected value of the

query parameter vrj (again, because of the independence assumption):

Eyesq[vrj ,b] [uj(xj)] = λj

Nj∑
k=1

Ck
xj
Eyesq [vkj ]

= λj C
r
xj
Eyesq [vrj ] + λj

∑
k 6=r

Ck
xj
Eyesq [vkj ]

= λj C
r
xj
Eyesq [vrj ] + λj

∑
k 6=r

Ck
xj
E[vkj ]

= λj C
r
xj
Eyesq [vrj ] +

(
E[uj(xj)]− λj Cr

xj
E[vrj ]

)
= E[uj(xj)] + λj C

r
xj

(
Eyesq [vrj ]− E[vrj ]

)
. (4.22)
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Thus, the difference between the posterior expectation Eyesq [uj(xj)] and the prior expectation

E[uj(xj)] is proportional to λj Cr
xj

(
Eyesq [vrj ]− E[vrj ]

)
:

Eyesq [uj(xj)]− E[uj(xj)] = λj C
r
xj

(
Eyesq [vrj ]− E[vrj ]

)
. (4.23)

The response yesq[vrj ,b] changes E[uj(xj)] only by changing E[vrj ] to Eyesq [vrj ]). Let dep(vrj )

be the set of all local outcomes xj whose subutility “depends” on the local value parameter vrj :

dep(vrj ) = {xj | Cr
xj
6= 0}. (4.24)

If xj /∈ dep(vrj ), then a query involving vrj will not change the expected value of uj(xj),

because the coefficient Cr
xj

is zero (Eq. 4.23):

Eyesq [uj(xj)] = E[uj(xj)], if xj /∈ dep(vrj ).

Otherwise, if xj ∈ dep(vrj ), then the expected posterior value of uj(xj) changes only because

of the change in the posterior expectation of vrj (Eq. 4.22):

Eyesq[vrj ,b] [uj(xj)] = E[uj(xj)] + λj C
r
xj

(
Eyesq [vrj ]− E[vrj ]

)
.

By substituting the expression for Eyesq [uj(xj)] in Eq. 4.22 into Eq. 4.21, we obtain the

final equation for the expected utility of the posterior belief state πyesq :

Eyesq[vrj ,b] [u(x)] = Eyesq [uj(xj)] +
∑
j′ 6=j

E[uj′(xj′)] (4.25)

=


E[uj(xj)] +

∑
j′ 6=j E[uj′(xj′)], if xj /∈ dep(vrj ),

E[uj(xj)] + λj C
r
xj

(
Eyesq [vrj ]− E[vrj ]

)
+
∑

j′ 6=j E[uj′(xj′)], otherwise.

An analogous expression holds for Enoq[vrj ,b] [u(x)].

Our goal in this subsection is to compute the values (MEUs) of posterior belief states πyesq and

πnoq that result from responses to an LBQ q[vrj , b]. The maximum expected utility of πyesq is

the expected utility of the best outcome for that belief state. We first introduce the function
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ρj(xj) that, for a given instantiation xj in factor Fj , specifies the best possible expected value

of subutilities in other factors:

ρj(xj) = max
x′ s.t. x′j = xj

∑
j′ 6=j

E[uj′(x
′
j′)]. (4.26)

Using Eq. 4.25, we obtain:

MEU(π
yesq[vr

j
,b]) = max

x
Eyesq[vrj ,b] [u(x)]

= max
xj

[
Eyesq [uj(xj)] + max

x′ s.t. x′j = xj

∑
j′ 6=j

E[uj′(x
′
j′)]

]

= max
xj

[Eyesq [uj(xj)] + ρj(xj)]

= max


maxxj /∈dep(vrj ) [E[uj(xj)] + ρj(xj)] ,

maxxj∈dep(vrj )

[
λj C

r
xj
Eyesq [vrj ] +

(
E[uj(xj)]− λj Cr

xj
E[vrj ]

)
+ ρj(xj)

]
.

(4.27)

Thus, to evaluate one LBQ q[vrj , b], we need to consider all local configurations xj that do

not “depend” on vrj (the number of such configurations is bounded by Nj , the total number of

configurations in factor Fj), and all local configurations that do depend on vrj (the number of

such configurations is determined by the GAI structure and is typically very small). Assuming

that the function ρj(xj) is precomputed, and that evaluating the posterior Eyesq [vrj ] is not hard

(i.e., the running time is bounded by some constant, though this depends on the form of the

density representation), the evaluation of MEU(π
yesq[vr

j
,b]) is linear in the number of local

configurations in factor Fj (or, equivalently, exponential in the number of attributes in Fj).

The MEU of πnoq can be computed in the same way, by replacing yesq with noq.

4.2.3.2 Expected posterior utility of a local bound query

The expected posterior utility of an LBQ q[vrj , b] is

EPU(q[vrj , b], π) = Pr(yesq|π) max
x

Eyesq [u(x)] + Pr(noq|π) max
x

Enoq [u(x)]. (4.28)
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By substituting Eq. 4.27 into Eq. 4.28, we obtain the following expression for the EPU of

a local bound query:

EPU(q[vrj , b], π) = Pr(yesq|π) max
x

Eyesq [u(x)] + Pr(noq|π) max
x

Enoq [u(x)]

= Pr(yesq|π) max


maxxj /∈dep(vrj ) [E[uj(xj)] + ρj(xj)]

maxxj∈dep(vrj )

[
λj C

r
xj
Eyesq [vrj ] +

(
E[uj(xj)]− λj Cr

xj
E[vrj ] + ρj(xj)

)]

+ Pr(noq|π) max


maxxj /∈dep(vrj ) [E[uj(xj)] + ρj(xj)]

maxxj∈dep(vrj )

[
λj C

r
xj
Enoq [vrj ] +

(
E[uj(xj)]− λj Cr

xj
E[vrj ] + ρj(xj)

)]

= Pr(yesq|π) max


γ(j, r)

maxxj∈dep(vrj ) [d1(xj|j, r) µyes(j, r, b) + d2(xj|j, r)]

+ Pr(noq|π) max


γ(j, r)

maxxj∈dep(vrj ) [d1(xj|j, r) µno(j, r, b) + d2(xj|j, r)] ,
(4.29)

where

γ(j, r) = max
xj /∈dep(vrj )

E[uj(xj)] + ρj(xj),

µyes(j, r, b) = Eyesq [vrj ],

µno(j, r, b) = Enoq [vrj ],

d1(xj|j, r) = λj C
r
xj
,

d2(xj|j, r) = E[uj(xj)]− λj Cr
xj
E[vrj ] + ρj(xj).

We can use Eq. 4.29 to evaluate LBQs in the query set Q. The myopically optimal query

q∗ is the one with the highest EPU:

q∗ = q[vr
∗

j∗ , b
∗] = arg max

j,r,b
EPU(q[vrj , b], π). (4.30)

Because the bound parameter b is continuous, we cannot find q∗ by simply enumerating all the

queries in Q. However, in certain settings, we can compute the optimal bound b for a specific
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local value parameter vrj . Since the number of local value parameters vkj is proportional to the

size of the GAI utility representation (we have Nj local configurations for each factor Fj), in

such cases it might be feasible to find the optimal query by enumerating LVF parameters and

computing optimal bounds for each of them. In the following subsection, we show that this is

feasible when the density π is a mixture of uniform probability distributions.

4.2.3.3 Mixtures of uniforms and bound queries

The prior π over local value parameters can assume many different forms, both parametric and

non-parametric. The density π would ideally facilitate several functions, including 1) accurate

representation of the systems’ beliefs about user utilities; 2) accurate and tractable updating of

the belief state after acquisition of new preference information; and, 3) support for query opti-

mization. Because LVF parameters are continuous, the parametric distributions that have been

proposed in the literature include a Gaussian distribution (Chajewska et al., 2000), a mixture

of Gaussians (Chajewska et al., 2000), a mixture of truncated Gaussians (Boutilier, 2002), and

a mixture of uniforms (Boutilier, 2002; Braziunas and Boutilier, 2005). Mixture distributions

are popular because they can compensate for the inflexibility of parametric models. Their rep-

resentational accuracy can be increased by adding more mixture components; in this sense, all

the mixture distributions offer similar advantages in representing user utilities. With respect to

belief state updates, none of the parametric distributions are closed under responses to compari-

son queries, and only mixtures of truncated Gaussians and uniforms are closed under responses

to bound queries. The common way of dealing with the belief state maintenance problem is

to sample from the posterior distribution and refit the original parametric distribution using a

standard method, such as EM (Chajewska et al., 2000). Of course, this results in additional

computational burden and the loss of representational accuracy with further updates. Finally,

some densities are better than others in facilitating query optimization. Densities that are not

closed under updates are especially difficult to deal with when optimizing for the best query,

since calculation of each query’s value involves estimating the values of all potential posterior
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belief states. Even for bound queries, which result in closed updates of mixtures of truncated

Gaussians and uniforms, only mixtures of uniform densities support analytical (myopic) op-

timization of the bound query’s continuous bound parameter (which is what we demonstrate

next). Therefore, in the remainder of this chapter, we use mixtures of uniforms to develop a

tractable myopic elicitation algorithm.

In previous work, Boutilier (2002) used mixtures of uniforms over unstructured (flat) utility

models. Here, we extend the framework to GAI utilities and show how to maintain the belief

state and compute optimal LBQ bounds b∗vrj for every LVF parameter vrj . Specifying prior

information over local utility parameters as a mixture of uniform distributions offers several

advantages for utility elicitation. With enough components, a mixture of uniforms is flexible

enough to approximate many standard distributions; furthermore, it also fits nicely with the

type of bound queries we consider here. Because the posterior distribution after a response

to a query remains a mixture of uniforms (we only need to update the component weights

and bounds), it is possible to maintain an exact density over utility parameters throughout the

elicitation process. Most importantly, with prior densities over utility parameters expressed as

mixtures of uniform distributions, we can calculate the optimal LBQ bounds b∗vrj analytically.

Let πvrj be the marginal probability density over the local value parameter vrj . We model the

density over local value parameters as a mixture of K multidimensional uniform distributions.

This implies a strong assumption of independence among the random variables representing

local value parameters. Instead of working with multidimensional uniform distributions, the

independence condition allows us to work with marginal probability distributions πvrj , one for

each local value parameter.

Each probabability distribution πvrj is a mixture of (one-dimensional) uniform distributions.

Such mixture is denoted byK triples 〈wk, αk, βk〉, where αk and βk are lower and upper bounds

of the kth component, and wk is its weight (wk ∈ [0, 1] for all k, and
∑

k wk = 1). Figure 4.6

shows four examples of mixtures of uniform distributions.
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In this subsection, we label a generic value parameter vrj as v, and use π to denote πvrj .

The mean value of π = 〈wk, αk, βk〉, k = 1..K is

µ = Ev∼π[v] =
K∑
k=1

wk
αk + βk

2
. (4.31)

Let q[v, b] be a local bound query with responses yesb and nob; the response yesb indicates

that the local value parameter v is above the bound b, and response nob indicates that the local

value parameter v is below the bound b. We assume a noiseless response model:

Pr(yesb|v) =


1, if v ≥ b,

0, otherwise.

Pr(nob|v) = 1− Pr(yesb|v).

If v is distributed according to π, the probability of response yesb (i.e., the probability that v is

greater than b) is:

Pr(yesq|π) =
K∑
k=1

wk
βk −max(αk,min(βk, b))

βk − αk
=

K∑
k=1

wk
βk − bk(b)
βk − αk

, (4.32)

where

bk(b) = max(αk,min(βk, b)) =


αk, if b ≤ αk,

b, if αk < b < βk,

βk, if b ≥ βk.

Similarly,

Pr(nob|π) =
K∑
k=1

wk
bk(b)− αk
βk − αk

. (4.33)

After receiving response yesb, the lower bounds αk of each mixture component are updated

to bk(b) = max(αk,min(βk, b)). Similarly, the response nob affects upper bounds of mixture

components. The posterior weights wyesbk and wnobk are:

wyesbk =
wk

βk−bk(b)
βk−αk∑

k′ wk′
βk′−bk′ (b)
βk′−αk′

,

wnobk =
wk

bk(b)−αk
βk−αk∑

k′ wk′
bk′ (b)−αk′
βk′−αk′

.
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(a) Uniform distribution
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(b) Mixture of 2 uniforms
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(c) Mixture of 5 uniforms
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(d) Mixture of 50 uniforms

Figure 4.6: Four examples of mixtures of uniform distributions. Part (a) shows the density of a uniform
distribution with bounds α = 0.2, β = 0.6. Part (b) is a mixture of two uniforms. The
first component’s bounds are α1 = 0.2, β1 = 0.6, and its weight is w1 = 0.33; the second
component’s bounds are α2 = 0.6, β2 = 0.8, and its weight is w2 = 0.67. Part (c) is a
mixture of five components, some of which “overlap” each other. Part (d) shows a mixture
of 50 components that approximates a bimodal distribution (a truncated mixture of two
Gaussians).
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The posterior distributions πyesb and πnob reflect updated mixture bounds and weights:

πyesb = 〈wyesbk , bk(b), βk〉, k = 1..K,

πnob = 〈wnobk , bk(b), βk〉, k = 1..K. (4.34)

The posterior means µyesb and µnob are:

µyesb =
K∑
k=1

wyesbk

bk(b) + βk
2

,

µnob =
K∑
k=1

wnobk

αk + bk(b)

2
. (4.35)

Optimization of query bound b

Our ultimate goal is to find the bound b that maximizes the EPU of a bound query on a specific

parameter vrj (Eq. 4.29). By looking at the functional form of expressions in Eq. 4.29 (and, for

now, ignoring the max operator), we can rewrite Eq. 4.29 as a function of the bound b:

f(b|π) = Pr(yesb|π) (cyes1 µyesb + cyes2 ) + Pr(nob|π) (cno1 µnob + cno2 ), (4.36)

where cyes1 , cyes2 , cno1 , c
no
2 are coefficients that do not depend on the bound b.

By substituting quantities from Eq. 4.32 and Eq. 4.35 into the first part of the expression

above, we obtain

Pr(yesb|π) (cyes1 µyesb + cyes2 ) =

=

[
K∑
k=1

wk
βk − bk(b)
βk − αk

]cyes1

 K∑
k=1

wk
βk−bk(b)
βk−αk∑

k′ wk′
βk′−bk′ (b)
βk′−αk′

bk(b) + βk
2

+ cyes2


=

[
K∑
k=1

wk
βk − bk(b)
βk − αk

] cyes1∑
k′ wk′

βk′−bk′ (b)
βk′−αk′

(
K∑
k=1

wk
βk − bk(b)
βk − αk

bk(b) + βk
2

)
+ cyes2


= cyes1

(
K∑
k=1

wk
βk − bk(b)
βk − αk

bk(b) + βk
2

)
+ cyes2

(
K∑
k=1

wk
βk − bk(b)
βk − αk

)
.

Similarly,

Pr(nob|π) (cno1 µnob+cno2 ) = cno1

(
K∑
k=1

wk
bk(b)− αk
βk − αk

bk(b) + αk
2

)
+cno2

(
K∑
k=1

wk
bk(b)− αk
βk − αk

)
.
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By adding the two parts together, the function f(b|π) from Eq. 4.36 becomes

f(b|π) = Pr(yesb|π) (cyes1 µyesb + cyes2 ) + Pr(nob|π) (cno1 µnob + cno2 ) =

= cyes1

(
K∑
k=1

wk
βk − bk(b)
βk − αk

bk(b) + βk
2

)
+ cyes2

(
K∑
k=1

wk
βk − bk(b)
βk − αk

)
+

cno1

(
K∑
k=1

wk
bk(b)− αk
βk − αk

bk(b) + αk
2

)
+ cno2

(
K∑
k=1

wk
bk(b)− αk
βk − αk

)

=
K∑
k=1

[
cyes1 wk

βk − bk(b)
βk − αk

bk(b) + βk
2

+ cyes2 wk
βk − bk(b)
βk − αk

+

cno1 wk
bk(b)− αk
βk − αk

bk(b) + αk
2

+ cno2 wk
bk(b)− αk
βk − αk

]
. (4.37)

For a given query bound b, the set {1, . . . , K} of mixture component indices can be partitioned

into three sets Kα, Kb, and Kβ , depending on whether the query bound b is below the lower

bound of the component (Kα), within the bounds of the component (Kb), or above the upper

bound of the component (Kβ):

Kα = {k | b ≤ αk}, (4.38)

Kb = {k | αk < b < βk}, (4.39)

Kβ = {k | b ≥ βk}. (4.40)

For k ∈ Kα, bk(b) = αk (Eq. 4.32), and therefore the term inside the sum in Eq. 4.37

simplifies to

cyes1 wk
βk − bk(b)
βk − αk

bk(b) + βk
2

+ cyes2 wk
βk − bk(b)
βk − αk

+ cno1 wk
bk(b)− αk
βk − αk

bk(b) + αk
2

+ cno2 wk
bk(b)− αk
βk − αk

= wk (cyes1 µk + cyes2 ).

Similarly, for k ∈ Kβ , bk(b) = βk. Therefore,

cyes1 wk
βk − bk(b)
βk − αk

bk(b) + βk
2

+ cyes2 wk
βk − bk(b)
βk − αk

+ cno1 wk
bk(b)− αk
βk − αk

bk(b) + αk
2

+ cno2 wk
bk(b)− αk
βk − αk

= wk (cno1 µk + cno2 ).
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Finally, for k ∈ Kb, bk(b) = b, so the term becomes a quadratic function of b:

cyes1 wk
βk − bk(b)
βk − αk

bk(b) + βk
2

+ cyes2 wk
βk − bk(b)
βk − αk

+ cno1 wk
bk(b)− αk
βk − αk

bk(b) + αk
2

+ cno2 wk
bk(b)− αk
βk − αk

=
wk

βk − αk

[
cyes1

2
(β2

k − b2) + cyes2 (βk − b) +
cno1

2
(b2 − α2

k) + cno2 (b− αk)
]

=
wk

βk − αk

[
(cno1 − c

yes
1 )

2
b2 + (cno2 − c

yes
2 ) b+

(
cyes1

2
β2
k −

cno1

2
α2
k + cyes2 βk − cno2 αk

)]
.

We can now rewrite Eq. 4.36 as follows:

f(b|π) = Pr(yesb|π) (cyes1 µyesb + cyes2 ) + Pr(nob|π) (cno1 µnob + cno2 ) =

=
K∑
k=1

[
cyes1 wk

βk − bk(b)
βk − αk

bk(b) + βk
2

+ cyes2 wk
βk − bk(b)
βk − αk

+

cno1 wk
bk(b)− αk
βk − αk

bk(b) + αk
2

+ cno2 wk
bk(b)− αk
βk − αk

]
=

=
∑
k∈Kα

wk (cyes1 µk + cyes2 ) +
∑
k∈Kβ

wk (cno1 µk + cno2 )+

∑
k∈Kb

wk
βk − αk

[
(cno1 − c

yes
1 )

2
b2 + (cno2 − c

yes
2 ) b+

(
cyes1

2
β2
k −

cno1

2
α2
k + cyes2 βk − cno2 αk

)]
=

=

[
(cno1 − c

yes
1 )

2
b2 + (cno2 − c

yes
2 ) b

] ∑
k∈Kb

wk
βk − αk

+

∑
k∈Kb

wk(c
yes
1 β2

k − cno1 α
2
k + 2cyes2 βk − 2cno2 αk)

2(βk − αk)
+
∑
k∈Kα

wk (cyes1 µk + cyes2 ) +
∑
k∈Kβ

wk (cno1 µk + cno2 ).

This last form of f(b|π) provides good insight into optimization with mixtures of uniforms.

We can see that no matter how we partition {1, . . . , K} into three sets Kα, Kb, and Kβ , the

derivative of f(b|π) (with respect to b) is (cno1 −c
yes
1 ) b+(cno2 −c

yes
2 ), and therefore the optimum

point of f(b|π) = Pr(yesb|π) (cyes1 µyesb + cyes2 ) + Pr(nob|π) (cno1 µnob + cno2 ) always occurs at

b∗ =
cyes2 − cno2

cno1 − c
yes
1

. (4.41)
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Figure 4.7: An example of a piecewise quadratic function of b (in bold/blue), with a common maximum
for all components (in red). The EPU of a bound query is of the same form with respect to
the bound parameter b.

Since the partitioning of mixture components depends on the value of b, the function is a

piecewise quadratic in b (see Fig. 4.7 for an example).

For LBQs, the query bound b is restricted to the [0, 1] interval. The following cases apply:

• If cno1 − c
yes
1 > 0, then the piecewise quadratic function is convex, and b∗ is a minimum

point. Thus, the maximum occurs at either b = 0 or b = 1.

• Otherwise, if cno1 − c
yes
1 ≤ 0, then the function is concave, and the maximum occurs at

b∗. However, if b∗ is outside [0, 1], then the maximum is either b = 0 or b = 1.

If the maximum occurs at either b = 0 or b = 1 (or outside the [0, 1] interval), the local query

provides no value. Indeed, when b = 0, the equation simplifies to cyes1 µ+cyes2 , and when b = 1,

the equation simplifies to cno1 µ+ cno2 . The query has value of information only if cno1 − c
yes
1 ≤ 0

(the function is concave) and b∗ =
cyes2 −cno2
cno1 −c

yes
1

is within [0, 1].
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Maximal EPU of local bound query on specific LVF parameter

Let’s recall that the expected posterior utility of the local bound query q[vrj , b] is (Eq. 4.29)

EPU(q[vrj , b], π) = Pr(yesq|π) max
x

Eyesq [u(x)] + Pr(noq|π) max
x

Enoq [u(x)]

= Pr(yesq|π) max


γ(j, r)

maxxj∈dep(vrj ) [d1(xj|j, r) µyes(j, r, b) + d2(xj|j, r)]

+ Pr(noq|π) max


γ(j, r)

maxxj∈dep(vrj ) [d1(xj|j, r) µno(j, r, b) + d2(xj|j, r)] ,

where

γ(j, r) = max
xj /∈dep(vrj )

E[uj(xj)] + ρj(xj),

µyes(j, r, b) = Eyesq [vrj ],

µno(j, r, b) = Enoq [vrj ],

d1(xj|j, r) = λj C
r
xj
,

d2(xj|j, r) = E[uj(xj)]− λj Cr
xj
E[vrj ] + ρj(xj).

Due to the structure of GAI utilities, the coefficients Cr
xj

, and, therefore, d1(xj|q[vrj , b]),

are always the same for all xj ∈ dep(vrj ) (i.e., all the non-zero entries in the rth column of

the Cj structure matrix are the same). By comparing the EPU equation above to our piecewise

quadratic function f(b|π) in Eq. 4.36, we notice that equality of coefficients d1(xj|q[vrj , b]) for

all xj ∈ dep(vrj ) in both the Pr(yes|q, π) and Pr(no|q, π) parts of the EPU equation means

that cyes1 = cno1 for all xj ∈ dep(vrj ), and, therefore, there is no b that maximizes the EPU in

such a case.
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Hence, the EPU equation 4.29 reduces to solving

max


maxxj∈dep(vrj ) Pr(yesq|π) γ(j, r) + Pr(noq|π) (d1(xj|j, r) µno(j, r, b) + d2(xj|j, r))

maxxj∈dep(vrj ) Pr(yesq|π) (d1(xj|j, r) µyes(j, r, b) + d2(xj|j, r)) + Pr(noq|π) γ(j, r)

= max


maxxj∈dep(vrj ) f1(b|xj, π)

maxxj∈dep(vrj ) f2(b|xj, π),

(4.42)

where

f1(b|xj, π) = Pr(yesq|π) γ(j, r) + Pr(noq|π) (d1(xj|j, r) µno(j, r, b) + d2(xj|j, r)),

f2(b|xj, π) = Pr(yesq|π) (d1(xj|j, r) µyes(j, r, b) + d2(xj|j, r)) + Pr(noq|π) γ(j, r).

Using Eq. 4.41, we can easily compute the bound b∗xj that achieves the optimal value of

f1(b|xj, π) (for a particular xj ∈ dep(vrj )). Since cyes1 = 0, cyes2 = γ(j, r), cno1 = d1(xj|j, r), cno2 =

d2(xj|j, r), the optimal bound is

b∗xj =
cyes2 − cno2

cno1 − c
yes
1

=
γ(j, r)− d2(xj|j, r)

d1(xj|j, r)
.

Similarly, for f2(b|xj, π), cyes1 = d1(xj|j, r), cyes2 = d2(xj|j, r), cno1 = 0, cno2 = γ(j, r). For

a given xj ∈ dep(vrj ), the optimal bound b∗xj is the same:

b∗xj =
cyes2 − cno2

cno1 − c
yes
1

=
d2(xj|j, r)− γ
−d1(xj|j, r)

=
γ − d2(xj|j, r)
d1(xj|j, r)

.

Thus, maxb f1(b|xj, π) = f1(b∗xj |xj, π), and maxb f2(b|xj, π) = f2(b∗xj |xj, π).

We can now write the expression for the optimal bound for a local bound query on a specific
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LVF parameter. For an LBQ on the value parameter vrj , the optimal bound b∗ is

b∗ = argmax
b

EPU(q[vrj , b], π)

= argmax
b

max


maxxj∈dep(vrj ) maxb f1(b|xj, π)

maxxj∈dep(vrj ) maxb f2(b|xj, π)

= argmax
b∗xj , xj∈dep(v

r
j )

max


f1(b∗xj |xj, π)

f2(b∗xj |xj, π),

(4.43)

where

f1(b|xj, π) = Pr(yesq|π) γ(j, r) + Pr(noq|π) (d1(xj|j, r) µno(j, r, b) + d2(xj|j, r)),

f2(b|xj, π) = Pr(yesq|π) (d1(xj|j, r) µyes(j, r, b) + d2(xj|j, r)) + Pr(noq|π) γ(j, r),

ρj(xj) = max
x′ s.t. x′j = xj

∑
j′ 6=j

E[uj′(x
′
j′)],

γ(j, r) = max
xj /∈dep(vrj )

E[uj(xj)] + ρj(xj),

µyes(j, r, b) = Eyesq [vrj ],

µno(j, r, b) = Enoq [vrj ],

d1(xj|j, r) = λj C
r
xj
,

d2(xj|j, r) = E[uj(xj)]− λj Cr
xj
E[vrj ] + ρj(xj).

The value of the best LBQ on a specific LVF parameter vrj is EPU(q[vrj , b
∗]), which can be

computed using the EPU equation 4.29.

Myopic elicitation procedure with mixtures of uniforms

Using mixture-of-uniforms prior distribution over LVF parameters and local bound queries,

we can implement the myopic elicitation procedure described earlier in Section 4.2.2 and test

its effectiveness. The key advantage of this particular setting is that it allows us to efficiently
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Input: Set of feasible outcomes XF , set of local bound queries Q, set of query costs
{cq|q ∈ Q}, sets of responses {{yesq, noq}|q ∈ Q}, noiseless response model
Pr(aq|u), prior mixture-of-uniforms distribution π = {〈wk, αk, βk〉, k = 1..K}
over LVF parameters vkj , termination criteria T

Output: Recommended outcome x∗

x∗ ← argmaxx∈XF
EU(x, π)

while termination criteria T not met do
foreach factor Fj and local value parameter vrj do

compute optimal bound b∗vrj according to Eq 4.43
compute EPU(q[vrj , b

∗
vrj

], π) according to Eq. 4.29
end
q∗ ← argmaxq∈QEPU(q, π)− cq
pose query q∗ to the user
if response is “yes” then

πyesb = {〈wyesbk , bk(b), βk〉, k = 1..K} (Eq. 4.34)
π ← πyesb

else if response is “no” then
πnob = {〈wnobk , αk, bk(b)〉, k = 1..K} (Eq. 4.34)
π ← πnob

end
x∗ ← argmaxx∈XF

EU(x, π)

end

Figure 4.8: The myopic Bayesian elicitation procedure with LBQ queries and mixture-of-uniforms den-
sity over LVF parameters

perform continuous optimization to compute the optimal bound b for each local bound query on

a specific LVF parameter (Eq. 4.43). Knowing the optimal bound for each LVF parameter, we

can enumerate every local bound query (the number of such queries is the same as the number

of GAI function parameters), compute their EVOI (Eq. 4.29), and select the best myopic query

based on its expected value of information and its cost.

The detailed algorithm for the myopic elicitation is shown in Fig. 4.8. It follows the same

pattern as the generic myopic elicitation algorithm discussed in Section 4.2.2 (Fig. 4.4). The

decision support system computes the best local bound query to ask by 1) finding the optimal

bounds b∗vrj (according to Eq. 4.43) for each LVF parameter vrj ; 2) using those bounds to

compute EPUs for local bound queries on each LVF parameter vrj ; 3) selecting the query with

the highest difference between its EPU and its cost.
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Due to GAI utility decomposition into factors and closed updates of mixtures of uniforms,

computing the myopically optimal local bound query at each query-response iteration is a

tractable procedure. Its complexity is linear in the number of GAI parameters and exponen-

tial in the induced tree width of the factor graph, which is commonly small (the exponential

complexity arises because of the need to compute the ρj(xj) function (Eq. 4.27) for each local

outcome xj).

In the next section, we test the effectiveness of the myopic elicitation algorithm on a 26-

attribute problem with simulated users.

4.3 Experimental results

We test the myopic GAI elicitation strategy with prior density specified as a mixture of uniform

distributions on a 26-attribute car-rental problem from (Boutilier et al., 2003b, 2005, 2006).

The car-rental problem is modeled with 26 variables that specify various attributes of a car

relevant to typical rental decisions. Variable domains range from 2 to 9 values, resulting in

61,917,364,224 possible configurations. The GAI model consists of 13 local factors, each

defined on at most five variables; the model has 378 utility parameters. The full description of

the car-rental domain is provided in the Appendix C.1.

We use the myopic elicitation algorithm described in Fig. 4.8 with three types of mixture-

of-uniform priors over LVF parameters:

1. a mixture of uniforms with 5 components (with the bounds chosen randomly);

2. a mixture of 10 uniforms approximating a Gaussian distribution (with the mean chosen

randomly, and the variance of 0.3);

3. a simple one-component uniform distribution.

Figure 4.9 shows an example of the three types of priors.
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(a) Mixture of 5 uniforms
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(b) “Gaussian” mixture of 10 uniforms
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(c) Uniform distribution

Figure 4.9: An example of the three types of mixtures of uniform distributions used as priors in our
experiments. The first one (a) is a mixture of 5 uniforms; the second (b) is a mixture of
10 uniforms approximating a Gaussian distribution; and, the third one (c) is a simple one-
component uniform distribution.
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For all types of priors, the structure of the car-rental problem is sufficient to compute the

myopically optimal query (that is, to compute the best bound for every LVF parameter and to

select the query with the highest EPU) in less than one second. Therefore, this approach could

support interactive real-time preference elicitation.

For this experiment, we assume that every query has the same cost; we stop the elicitation

process after 100 queries. To provide the baseline strategy to compare against, we use the

random query strategy. The random strategy chooses an LVF parameter (i.e., a GAI factor and

one of its local configurations) to query about at random; the query bound b, however, is not

selected randomly. To ensure a fair comparison between the random and Bayesian strategies,

we set the bound for a random query to the expected local value of the LVF parameter, so as to

give equal odds to either response.

To run the experiment, we start with the three fixed prior distributions over LVF parame-

ters decribed above (a mixture of uniforms, a mixture of uniforms approximating a Gaussian

distribution, and a simple uniform distribution), and then sample 100 “true” utility functions

from each of these prior distributions. Figure 4.10 shows the averaged (over 100 simulated

user utilities) performance of the Bayesian and random strategies for the three types of priors

as a function of the number of elicitation queries. After each query, we compute the expected

loss (see Eq. 4.17) of terminating the elicitation process by sampling 30 utility functions ac-

cording to the system’s belief state, and averaging the expected loss under each sampled utility

function. In addition to plotting expected loss (which is one of the termination criteria avail-

able to the system), we also show true utility loss (which is not available to the system). The

difference between the expected and true utility loss in most cases is small, which validates the

use of expected loss as an appropriate termination criterion.

Each subfigure in Figure 4.10 compares the performance of the myopic EVOI strategy and

the random strategy described above. For all three types of priors, the myopically optimal

EVOI strategy is clearly superior to the random query strategy, which at best reduces the true

loss by about 20% after 100 queries (for the uniform and mixture-of-uniforms prior), and at
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(a) Expected and true utility loss (uniform prior)
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(b) Expected and true utility loss (mixture prior)
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(c) Expected and true utility loss (Gaussian-like prior)

Figure 4.10: The performance of the random and the myopic Bayesian elicitation strategies on the car-
rental domain for three different types of priors. The graphs show expected (solid lines)
and true (dotted lines) utility loss as a function of the number of elicitation queries. The
random strategy curves are on the top, and the EVOI strategy curves are on the bottom.
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worst by only 2% for the Gaussian-like prior. The EVOI strategy cuts the utility loss by 50%

after 20 queries in Figure 4.10 (a), and after 16 queries in Figures 4.10 (b) and 4.10 (c). When

evaluating the performance of the EVOI strategy, we should keep in mind that the problem

is large (378 parameters), and the queries are limited to local bound queries (which do not

provide as much information as, for example, direct utility queries).

Comparing different priors, we can see that because the “Gaussian” prior has less entropy

than the mixture-of-uniforms or the uniform prior, its starting utility loss value (before any

elicitation queries) is much lower than for the other two priors (less than 0.04 vs. 0.08 and

0.14). However, the performance of the random versus myopic EVOI strategy follows a similar

pattern across the three types of priors: the random strategy achieves only a very small decrease

in utility loss when compared to the myopically optimal strategy.

4.4 Conclusion

4.4.1 Related work

The origins of the Bayesian modeling of uncertainty over utilities dates back to early research

in game theory and decision theory: probabilistic modeling of possible payoff functions pro-

vides the foundation to the well-established field of Bayesian games (Harsanyi, 1967, 1968); a

related concept of adaptive utility is discussed by Cyert and de Groot (1979); de Groot (1983);

and, Weber (1987) proposes using expectations over utility functions as a possible criterion

for decision making with incomplete preference information. The hierarchical Bayesian tech-

niques used in the marketing field of conjoint analysis also treat utilities as random variables,

drawn from a distribution that aggregates the utilities of users from a specific population.

In the AI community, the Bayesian elicitation is used by Chajewska and Koller (2000);

Chajewska et al. (2000); Boutilier (2002); Braziunas and Boutilier (2005); Guo and Sanner

(2010); Bonilla, Guo, and Sanner (2010); Viappiani and Boutilier (2010). Among the probabil-

ity distributions used to model uncertainty over utility functions, we find mixtures of Gaussians
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(Chajewska et al., 2000), mixtures of truncated Gaussians (Boutilier, 2002), Gaussians (Guo

and Sanner, 2010), Gaussian processes (Bonilla et al., 2010), mixtures of uniforms (Boutilier,

2002; Wang and Boutilier, 2003; Braziunas and Boutilier, 2005), and Beta distributions (Abbas,

2004). Such probability models are chosen to ensure that they are either closed under updates

due to user responses, or easy to refit after each response. Viappiani and Boutilier (2010) ex-

amine myopic EVOI optimization of choice queries in settings where a user is asked to select

the most preferred option from a set; they employ a logistic reponse model and consider both

noiseless and noisy responses.

4.4.2 Contributions and limitations

In this chapter, we demonstrate the feasibility of the Bayesian approach to elicitation of local

GAI utility parameters (all other work assumed flat utility representations). In particular, we

show that if the priors over local parameters are specified using mixtures of uniforms, then

the best myopic local bound query on a specific LVF parameter can be computed analytically

(Braziunas and Boutilier, 2005). This is due to the fact that mixtures of uniforms are closed

under updates resulting from bound queries, which makes it possible to maintain an exact den-

sity over utility parameters throughout the elicitation process. We use this result to develop a

tractable procedure for myopically optimal preference elicitation. Experimental results with

simulated user utilities confirm the benefits of our approach and show that it can potentially

support interactive real-time elicitation.

The elicitation algorithm described in this chapter is meant to demonstrate the feasibility of

Bayesian elicitation. It has not been tested with real users (however, Chapter 6 describes a user

study with a recommendation system that uses the same general elicitation framework, based

on a sequence of interactions (queries and responses) between the user and the system). Our

approach relies on many assumptions; many aspects can be improved with further research.

The general elicitation framework, described in Section 4.2.1 (Fig. 4.3) is quite rigid: users
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interact with the decision support system by providing predefined responses to a limited set of

queries. We assume that users can clearly articulate their preferences and provide meaningful,

accurate and consistent responses. We ignore issues of framing and potential biases that are

introduced due to the order of queries (Pu et al., 2003). Nonetheless, we hope that the basic

elicitation framework introduced in this chapter can serve as a basis for a practical decision

support system that also addresses human-centered elicitation issues.

There are many ways to represent probabilistic uncertainty over utilities. Here, we only

explore the setting in which the system has a mixture-of-uniforms prior over LVF parameters.

This imposes a strong probabilistic independence assumption on the density that represents

utility function uncertainty. Investigating other forms of prior distributions (over possibly dif-

ferent utility parameter sets) remains an open research direction. A related problem is acquisi-

tion of prior knowledge. Priors could be provided by experts, or learned from data (Chajewska

et al., 1998). Although public utility databases are very scarce, their availability is increasing

(Portabella Clotet and Rajman, 2006; Braziunas and Boutilier, 2010). When no prior informa-

tion is available, we need a different approach to preference elicitation; one such approach is

presented in the next two chapters.

Out of the four basic query types (see Section 3.3), in this chapter we concentrate on local

bound queries only. Comparison queries present serious challenges when uncertainty is repre-

sented by a parametric probability model since responses to comparison queries impose “diag-

onal” (rather than axis-parallel) constraints on posterior distributions. This requires sampling

and refitting for belief state maintenance and also complicates query optimization. However,

incorporation of more types of queries is vital for practical systems, since users are likely to be

more comfortable with simpler binary comparison queries than bound queries.

Finally, our proposed myopic elicitation is not sequentially optimal because it does not con-

sider the impact of future queries when computing the value of a belief state. Solving for the

sequentially optimal query policy is equivalent to solving a POMDP with a continuous state

space, which is a very hard problem (Boutilier, 2002). Several approaches for solving the pref-
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erence POMDP have been proposed, including value function approximation (Boutilier, 2002)

and searching for good finite controller policies (Braziunas and Boutilier, 2004). However,

more research is needed to scale these solutions to realistic problems. Another direction would

be for the system to perform more than one-step lookahead online when evaluating queries (if

the system has enough time between queries). With a deep lookahead horizon, the value of a

query would approach its sequentially optimal value.
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This chapter deals with decision making and elicitation of GAI utilities when no prior

probabilistic information about user preferences is available. The key ideas and results in this

chapter were first published by Braziunas and Boutilier (2007).

5.1 Decisions with partial utility information

In contrast to the previous chapter, here we deal with a scenario in which we only have knowl-

edge of a set of functions U to which the true user utility function belongs. Generally, such

a set is described by a collection of bounds, or, more generally, arbitrary constraints, on the

user’s utility function parameters. Without probabilistic information on the distribution of pos-

sible utility functions, we advocate a solution that minimizes maximum regret over the space

of possible utilities. Such minimax regret bounds the worst-case loss a user could experience

given this uncertainty over utilities. In case further preference information is potentially avail-

able, a minimax regret based elicitation policy can be employed to reduce utility uncertainty to

the extent where an (approximately) optimal decision can be recommended.

As in the Bayesian elicitation scenario, we are concerned with two main issues: how to

make decisions when full utility information is not available, and how to select good elicitation

queries when a user is willing to provide additional preference information.
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5.1.1 Uncertainty representation

In this section, we describe how to represent strict uncertainty over GAI utilities by using con-

straints on GAI model parameters. First, we describe the relevant notation (already introduced

in the previous chapters).

Notation

The outcome set X = X1×· · ·×XN is defined by instantiations ofN attributesX1, X2, . . . , XN ,

each with finite domains. Given an index set I ⊆ {1, . . . , N}, XI = ×i∈IXi is the set of partial

outcomes (or suboutcomes) restricted to attributes indexed by I . We also assume a collection

of M attribute subsets, or factors, that cover the set of all attributes: F1 ∪ F2 · · · ∪ FM =

{X1, X2, . . . , XN}. A factor FI = {Xi | i ∈ I} contains the attributes whose indices are in

the index set I ⊆ {1, . . . , N}. For a factor Fj , xIj , or simply xj , is a particular instantiation

of its attributes. The factors (and their associated sets of indices) are enumerated from 1 to M :

F1, F2, . . . , FM . To simplify the notation, we write Fj = FIj (and xj = xIj ).

Let x0 = (x0
1, x

0
2, . . . , x

0
N) denote a special outcome in X designated as the reference out-

come (see Section 3.1.3). By using a reference outcome, any outcome x ∈ X can be “pro-

jected” to a subset space indexed by I , resulting in the outcome x[I]. For any x ∈ X, x[I] is

an outcome where attributes of x not indexed by I are clamped at the reference values.

Each factor has Nj = |Xj| local (partial) outcomes, i.e., possible instantiations of factor

attributes. A basic outcome b for factor Fj is any outcome x with attributes outside factor Fj

set to the reference level: b = x[Ij] for some x ∈ X. Each factor Fj has Nj basic outcomes,

corresponding to Nj partial outcomes of Fj . The kth basic outcome for factor Fj is denoted as

bj,k.

The GAI factors are assumed to be generalized additively independent (see Definition 3.1);

therefore, user preferences can be represented by a GAI utility function u(x) =
∑M

j=1 uj(xj)

(Theorem 3.1).
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Two parametric representations of GAI utilities

In Chapter 3, we introduced two parameterized GAI model representations that rely on the

notions of GAI parameters, local value parameters, and structure coefficients. GAI parameters

(also referred to as basic outcome parameters) θkj = u(bj,k) represent utility values of basic

outcomes. We let θ ∈ Θ to denote a vector of all basic outcome parameter values (Θ is the

space of all possible GAI parameter vectors):

θ = (θ1
1, θ

2
1, . . . , θ

1
j , θ

2
j , . . . , θ

Nj
j , . . . , θNMM ).

Structure coefficients encode attribute decomposition into factors (see Section 3.2.2 for details).

For each factor Fj , Cj is a square Nj ×Nj matrix of integer coefficients, whose rows specify

the linear combination of GAI parameters defining factor subutility values. For each factor

outcome xj , Cxj is the ind(xj) row of Cj (ind(xj) is the index of the local configuration xj),

and Ck
xj

= Cj[ind(xj), k] is the kth entry in that row vector.

The first parameterization (Eq. 3.15, 3.22) defines the utility of any outcome x ∈ X as a

linear combination of GAI parameters:

u(x|θ) =
M∑
j=1

Nj∑
k=1

Ck
xj
θkj .

This representation is global, in the sense that all the parameters are semantically defined with

respect to full outcomes (GAI parameters are utilities of basic outcomes, and basic outcomes

are full outcomes).

The second GAI representation uses mostly local LVF parameters. An LVF (local value

function) parameter vkj = vj(x
k
j ) denotes the local value of factor configuration xkj . Such local

value parameters can be assessed by local queries that consider only attributes in the relevant

factor and its conditioning set (see Section 3.3). The local GAI representation also uses a small

number (2M ) of global anchor parameters θ>1 , θ
⊥
1 , . . . , θ

>
M , θ

⊥
M that are necessary for utility

calibration across different factors. The global parameters θ>j = u(bj,>) and θ⊥j = u(bj,⊥) de-

fine the utilities of the best and worst basic outcomes for factor Fj . The local parameterization
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of the GAI utility function (Eq. 3.20, 3.23) is as follows:

u(x|θ) =
M∑
j=1

(θ>j − θ⊥j )

Nj∑
k=1

Ck
xj
vkj

 .
Since structure coefficients Cj are fixed given the GAI factor decomposition, a GAI util-

ity function is fully determined by either the global parameters {θ1
1, . . . , θ

k
j , . . . , θ

NM
M } or 2M

global parameters {θ>1 , θ⊥1 , . . . , θ>M , θ⊥M} and the local LVF parameters {v1
1, . . . , v

k
j , . . . , v

NM
M }.

Global GAI parameters and local LVF parameters are linearly related if anchor parameters are

fully known:

θkj = (θ>j − θ⊥j ) vkj + θ⊥j ,

vkj =
1

θ>j − θ⊥j
θkj −

θ⊥j
θ>j − θ⊥j

.

Therefore, information about local parameters can be used to assess global parameters, and

vice versa.

Feasible utility functions as a convex polytope in GAI parameter space

Uncertainty over utilities can be explicitly represented by set U of feasible utility functions,

namely, those consistent with the system’s knowledge of the user’s preferences (e.g., based

on responses to elicitation queries asked so far). The set U is updated—reduced in size—

when new preference information is received during the elicitation process. In contrast to the

Bayesian case, no information is available about the relative likelihood of the different utility

functions in U.

For GAI utilities, the utility space U can be represented by all feasible basic outcome

parameter values ΘU ⊆ Θ. In this chapter, we primarily use the first parameterized represen-

tation of GAI utility functions (Eq. 3.15):

u(x) =
M∑
j=1

Nj∑
k=1

Ck
xj
θkj .

The set of feasible utilities U is fully determined by the set of feasible parameter vectors

ΘU. If the feasible utility space U is characterized by a set of linear constraints U on utility
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θ1

θ2

3

11

15

4 140

(a) 2D polytope

θ1

θ2

θ3

(b) 3D polytope

Figure 5.1: An example of two-dimensional (a) and three-dimensional (b) polytopes in the utility pa-
rameter space, defined by the set U of linear constraints on utility parameters. The two-
dimensional polytope (a), represented by the shaded area, is defined by the sequential addi-
tion of linear bound and comparison constraints θ1 ≤ 15, θ1 ≥ 3, θ2 ≤ 14, θ2 ≥ 4, θ2 ≥
θ1, θ1 ≤ 11.

function parameters, then it is a convex polytope in the utility parameter space. Figure 5.1

shows examples of two-dimensional and three-dimensional polytopes defined by the set U of

linear constraints on utility parameters Θ.

5.1.2 Decision criterion: minimax regret

Without probabilistic information on the distribution of possible utility functions, the minimax

regret (MMR) decision criterion guarantees worst-case bounds on the quality of the decision

made under strict uncertainty and is therefore reasonable in many real-world scenarios (Sav-

age, 1951; Boutilier et al., 2001; Wang and Boutilier, 2003; Boutilier et al., 2004c, 2006). It

prescribes an outcome that minimizes maximum regret with respect to all possible realizations

of the user’s utility function.

Let XF ⊆ X be the set of feasible outcomes. Such a set could be explicitly enumerated

as a list of items in a database, or defined implicitly by a collection of hard constraints H on

attribute instantiations. Minimax regret can be defined in stages, building on the notions of

pairwise regret and maximum regret (Boutilier et al., 2001).

Definition 5.1 (Pairwise regret) The pairwise regret of choosing x instead of y, when the
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u(x)

u1 u2 u3 u4

x1 2 2 0 1

x2 1 1 1 1

x3 0 4 0 0

x4 1 3 0 0

(a) Utilities of outcomes

R(xi,xj, U)

maxuRu(x
i,xj)

x1 x2 x3 x4

x1 0 1 2 1

x2 1 0 3 2

x3 2 1 0 1

x4 1 1 1 0

(b) Pairwise regrets

MR(x)

maxy R(x,y, U)

x1 2

x2 3

x3 2

x4 1

(c) Maximum regrets

Table 5.1: A small example of a decision scenario with four feasible utilities u1, u2, u3, u4 and four
feasible outcomes x1,x2,x3,x4. The matrix (a) lists utilities of outcomes; the matrix (b)
specifies pairwise max regrets of choosing some outcome xi instead of xj ; maximum regrets
of choosing each outcome are listed in Table (c). The minimax regret-optimal outcome is x4.

user utility function is u ∈ U, is simply the difference between the utilities of the two out-

comes:

Ru(x,y) = u(y)− u(x). (5.1)

Since the exact utility function u is often unknown, we also define the pairwise max regret with

respect to the whole feasible utility region U:

R(x,y,U) = max
u∈U

(u(y)− u(x)) = max
u∈U

Ru(x,y). (5.2)

Thus, the pairwise max regret with respect to the utility region U is defined by choosing a

utility function within that region that maximizes the pairwise regret Ru(x,y). This utility

uw = arg max
u

Ru(x,y)

will be referred to as an “adversary’s utility” or “witness utility”, since it represents a point in

the utility space U that maximizes the regret.

Example 5.1 Consider the decision situation summarized in Table 5.1(a). In this small exam-

ple, the feasible utility set U = {u1, u2, u3, u4} is finite and consists of four different utility
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functions. The feasible outcome set XF = {x1,x2,x3,x4} contains four feasible outcomes,

whose utilities are specified in Table 5.1(a). In Table 5.1(b), the pairwise max regret of choos-

ing x2 rather than x3 is 3 (with the witness utility u2), while the regret of choosing x3 rather x2

is 1 (with witness utilities u1, u2, and u4). Pairwise max regret is not symmetrical. It could be

negative, if x is preferred to y under any possible utility function in U.

Definition 5.2 (Maximum regret) The maximum regret of choosing x is

MR(x,U) = max
y∈XF ,u∈U

Ru(x,y) = max
y∈XF

R(x,y,U). (5.3)

The maximum regret value is achieved by finding both the outcome y and utility u that make the

regret of choosing x as large as possible. The values 〈yw, uw〉 = arg maxy∈XF ,u∈URu(x,y)

that achieve the maximum regret MR(x,U) will be known as the “witness” or “adversary’s”

choice. Since yw = arg maxy∈XF
Ruw(x,y), yw is the optimal outcome for uw.

Example 5.2 In the example shown in Table 5.1(c), the maximum regret of choosing x1 is 2,

obtained by taking the maximum pairwise regret across all columns of the matrix 5.1(b).

Definition 5.3 (Minimax regret and minimax regret-optimal solution) Finally, the outcome

that minimizes max regret is the minimax optimal outcome:

x∗ = argmin
x∈XF

max
y∈XF ,u∈U

Ru(x,y) = argmin
x∈XF

MR(x,U). (5.4)

The minimax regret optimal outcome x∗, together with the adversary’s choice of an outcome

yw and utility uw that maximize the regret of x∗ comprise the solution triple 〈x∗,yw, uw〉 of a

minimax regret problem. For a feasible utility set U, the minimax regret level MMR(U) is

determined by the solution triple:

MMR(U) = min
x∈XF

max
y∈XF

max
u∈U

[u(y)− u(x)] = uw(yw)− uw(x∗). (5.5)

By choosing x∗, the user is guaranteed to be no more than MMR(U) away from the op-

timal decision utility. Furthermore, any other outcome x 6= x∗ has MR(x,U) ≥ MMR(U),

i.e., any other outcome can result in a loss at least as great as the worst case loss of x∗ under

some realization u ∈ U of the user’s utility function.
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Example 5.3 In the example shown in Table 5.1(c), minimax regret is 1, obtained by the so-

lution x∗ = x4,xw = x1, uw = u1 (there are other adversary choices that achieve the same

MMR level as well).

The rest of the chapter deals with the application of the minimax decision criterion to GAI

models.

5.2 Minimax regret in GAI models

In factored utility models, uncertainty over utilities can be represented by constraints over util-

ity function parameters. In our setting, we assume the GAI utility model with linear constraints

U on GAI parameters ΘU (see Figure 5.1). With appropriate modeling of feasible outcomes

and feasible utilities, we can exploit the GAI structure in computing the minimax regret optimal

choice.

In this chapter, we extend the previous work on applying minimax regret to decision mak-

ing with and elicitation of GAI utility models (Boutilier et al., 2001, 2003b, 2005, 2006) in

several new directions. Boutilier et al. (2006) represent uncertainty over GAI utilities by upper

and lower bounds on subutility function parameters and show how to compute MMR using

mixed integer linear programs that take advantage of this specific uncertainty representation;

the bounds can be tightened using bound queries with binary responses. Based on our results

from Chapter 3, we improve the previous approaches by 1) using a GAI parameterization that

preserves local structure semantics and allows us to employ semantically sound local queries

(avoiding previously ignored “calibration” issues of local utility values across different fac-

tors); 2) using arbitrary linear constraints to represent feasible utilities; and, 3) incorporating

all types of queries (not just bound queries) described in Sec 3.3 into the elicitation frame-

work.1 In addition to previously considered decision settings where feasible outcomes are

1Boutilier et al. (2006) also provide mixed linear integer formulations of MMR with arbitrary linear con-
straints, but do not experiment with them.
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defined by hard constraints on attribute values, we also deal with database problems, where

feasible outcomes are explicitly specified as items in a multiattribute database.

The current section deals with computation of minimax regret in GAI models (while the fol-

lowing section addresses minimax regret-driven elicitation of GAI models). We first introduce

two sets of constraints that define the feasible utility set U. Then, we show how the max pair-

wise regret (given two specific outcomes in XF ) can be computed by solving a linear program.

The computation of pairwise regret is the same for both configuration and database problems.

Computing maximum regret and minimax regret requires different techniques, which we de-

scribe separately for configuration and database problems.

5.2.1 Constraints on GAI utility parameters

Up to this point, we assumed that uncertainty over utility functions is represented by the set

U of linear constraints that define the set of feasible GAI parameters ΘU. Here, we introduce

an additional GAI structure constraint set G. GAI structure constraints G can be thought of as

a part of U ; however, since they depend only on the GAI function structure and remain static

with additional preference information, it is useful to consider them separately.

5.2.1.1 GAI structure constraints G

The GAI structure constraints G are equality constraints on certain GAI parameters θkj . Because

of the GAI network structure, some basic outcomes belonging to different factors are, in fact,

the same. That is, the basic outcome sets Bj for different factors Fj are not disjoint; some

outcome x might be in several basic outcome sets. One example is the reference outcome x0:

by definition, x0 = x0[I1] = x0[I2] . . . = x0[IM ], which is a member of all basic outcome sets

B1, . . . , BM . Let θ0
j = u(x0[Ij]). Then, since θ0

j = u(x0[Ij]) = u(x0) for all j = 1, . . . ,M ,

G always contains M − 1 constraints θ0
1 = θ0

2 = . . . = θ0
M . In addition, if the factors are

not disjoint, there are other basic outcomes that belong to several factors. In the example in

Table 5.2, b1,1 = b2,1 = (x1, y1, z1), and therefore, θ1
1 = θ1

2, in addition to the reference
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x1

x1
1 = x1y1

x2
1 = x2y1

x3
1 = x1y2

x4
1 = x2y2

(a) Factor F1

x2

x1
2 = y1z1

x1
2 = y2z1

x1
2 = y1z2

x1
2 = y2z2

(b) Factor F2

x

x1y1z1 = b1,1 = b2,1

x2y1z1 = b1,2

x1y2z1 = b1,3 = b2,2 = x0

x2y2z1 = b1,4

x1y1z2 = b2,3

x2y1z2

x1y2z2 = b2,4

x2y2z2

(c) Basic outcomes

Table 5.2: An illustrative example of a GAI model with three binary attributes x, y, z and two factors
F1 = {X,Y } and F2 = {Y,Z}. The reference outcome is x0 = x1y2z1; in all configu-
rations shown above, the reference values are underlined. Table (a) enumerates all the local
configurations of factor F1, and Table (b) enumerates all the local configurations of factor
F2. Table (c) shows all outcomes in X, and specifies which of those outcomes are basic out-
comes. For example, outcome x2y2z2 is not a basic outcome for any factor, whereas outcome
x2y2z1 = b1,4 is the fourth basic outcome of factor F1 (because x4

1 = x2y2 is the fourth lo-
cal configuration in factor F1, and z1 is the remaining attribute outside the factor, fixed at the
reference level). Some outcome might also be a basic outcome for several different factors:
x1y1z1 = b1,1 = b2,1 is a basic outcome for both factors F1 and F2; the same holds for
the reference outcome x1y2z1 = b1,3 = b2,2. GAI structure constraints G ensure that utility
parameters θkj reflect such equalities between basic outcomes from different factors.
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constraint θ3
1 = θ2

2. For any two factors Fj and Fk with shared attributes, we also have |XIj∩Ik |

shared basic outcomes (each corresponding to a local instantiation of the shared attributes).

Because of the interdependencies among factors, the number of independent GAI param-

eters is smaller than the number of all GAI parameters θkj . The size of the GAI structure

constraint set G is exactly the difference between the number of all GAI parameters and the

number of independent GAI parameters; it depends on the GAI network structure and is expo-

nential in the size of the largest pairwise intersection between GAI factors. In practice, the set

G can be computed by going through all GAI parameters θkj , and recording the parameters that

map to the same full outcome.

5.2.1.2 GAI utility constraints U

At any point in the elicitation process, GAI utility constraints U reflect the current knowledge

of the utility parameters θkj . The constraint set U changes (increases in size) as more preference

information is obtained, while the set of structure constraints G remains static, since it depends

only on the GAI model structure.

At the outset, the decision support system’s knowledge of user utilities might be very min-

imal, in which case U consists of only a few very loose initial constraints. In some domains, it

is reasonable to impose loose upper and lower bounds on the GAI parameters. For example, in

the apartment rental domain (see Chapter 6), we assume that all apartments are valued between

$400 and $1800. Since we use a monetary scale for utilities, the initial bounds for parameters

θjk are [400, 1800].

Responses to preference queries described in Section 3.3 add linear constraints to the set

U . For example, a global comparison query response x � y results in the constraint

M∑
j=1

Nj∑
k=1

(Ck
xj
− Ck

yj
) θkj ≥ 0,

while a response to a local bound query vj(xij) ≥ b adds the constraint

θij − bθ>j − (1− b)θ⊥j ≥ 0.
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5.2.2 Pairwise regret

The pairwise regret equation for GAI models follows directly from the parametric representa-

tion of GAI utilities:

R(x,y,U) = max
u∈U

u(y)− u(x)

= max
θ∈ΘU

 M∑
j=1

Nj∑
k=1

Ck
yj
θkj −

M∑
j=1

Nj∑
k=1

Ck
xj
θkj


= max

θ∈Θ

M∑
j=1

Nj∑
k=1

(Ck
yj
− Ck

xj
) θkj , (5.6)

subject to GAI structure constraints G and

GAI utility constraints U .

Given two outcomes x and y, represented as attribute vectors, we can determine the corre-

sponding entries Ck
xj

and Ck
yj

in the GAI structure matrices, for every factor index j and every

local configuration index k ∈ 1..Nj (see Section 3.2.2). Therefore, Ck
yj
− Ck

xj
can be treated

as known constant. Since G and U are linear constraints, the max pairwise regret, as defined

above, can be computed by solving a linear program with the number variables equal to the

number of GAI parameters, and the number of constraints equal to the number of GAI utility

structure constraints G (which, in practice, is small) and the number of utility constraints U

(which depends on the number of elicitation queries asked).

In practice, if the number of attributes in the domain is small (tens or hundreds), the pair-

wise regret can be computed very fast, in a fraction of a second (as we will see below).

5.2.3 Configuration problems

Unlike computation of pairwise regret, computation of maximum regret (of choosing some

outcome x) and minimax regret depends on the problem type.

In configuration problems, the space of feasible configurations XF is implicitly defined by

a set of constraints H specifying allowable combinations of attributes. Each constraint in H is
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defined over a subset of attributes and induces a set of legal configurations of those attributes.

The set of feasible configurations XF satisfies all the constraints inH.

We assume that constraints H are specified in a compact logical form. For example, in the

car-rental domain (see Appendix C.1), the outcome space X is defined by 26 attributes relevant

to consumers considering a car rental, such as automobile size and class, seating and luggage

capacity, safety features, etc. Logical constraints, such as “no luxury sedans have four-cylinder

engines” or “economy class cars do not have cruise control” enforce feasibility.

Finding a feasible outcome given constraint set H is a constraint satisfaction problem

(CSP).1 Our goal here is more general, since we are interested in constrained optimization:

instead of finding any feasible outcome, we are interested in finding the best (in terms of mini-

max regret) feasible outcome.

In this section, we show how to effectively solve the maximum regret and minimax regret

optimizations in configuration domains by taking advantage of the feasible outcome space

structure (compactly defined by constraintsH) and GAI model structure.

5.2.3.1 Outcome encoding using attribute and factor indicators

Before we describe how to compute maximum regret in configuration domains, we introduce

a way to encode outcome and factor instantiations in GAI models using binary indicator vari-

ables. Such an encoding will be useful in formulating regret computations as mixed integer

programs (MIPs).

Let Ati be an indicator variable that specifies whether attribute Xi is set to the tth value:

Ati =


1, if Xi = xti,

0, otherwise.
(5.7)

For each attribute Xi, we have |Xi| indicator variables A1
i , . . . , A

|Xi|
i , one for each discrete

value of the attribute. If the attribute takes the tth value, the indicator variable Ati is set to one,

1Dechter (2003) provides a detailed overview of CSP solution methods.
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while all other attribute indicator variables are set to zero. Valid outcomes in X can be encoded

by a set {Ati} of binary attribute indicators if they respect the following constraints:

Ati ∈ {0, 1}, for all i and t,∑
k

Ati = 1 for all i (attributes can take only one value at a time). (5.8)

In GAI models, there is also a correspondence between a full outcome instantiation x and

consistent factor instantiations x1,x2, . . . ,xM . That is, given x, we can determine x1,x2, . . . ,xM ,

and vice versa:

x←→ (x1,x2, . . . ,xM).

Just like for attribute values, we can encode factor outcome instantiations using indicator vari-

ables Zk
j , with k ranging through all Nj possible factor instantiations:

Zk
j =


1, if Xj = xkj ,

0, otherwise.
(5.9)

Let xkj 3 xti denote an instantiation relationship between a factor outcome xkj and an at-

tribute value xti. That is, xkj 3 xti means that the factor Fj contains the attribute Xi, and in xkj

that attribute takes value xti. Factor indicators Zk
j obey the following constraints:

Zk
j ∈ {0, 1}, for all j and k ∈ 1..Nj,∑
k

Zk
j = 1 for all j (there can be only one factor instantiation),

∑
k s.t. xkj3xti

Zk
j ≤ Ati for all j ∈ 1..M , for all i such that Xi ∈ Fj , and all values t of Xi.

(5.10)

The first two constraints are similar to those for attribute indicators. The third one ties together

attribute and factor indicator constraints to ensure consistent instantiations. In particular, we

need to ensure that whenever some factor is instantiated to the factor outcome xkj , all attributes
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in that factor take appropriate values:

xkj =⇒ xti, if xkj 3 xti

⇐⇒

Zk
j =⇒ Ati, if xkj 3 xti

⇐⇒

Zk
j ≤ Ati, if xkj 3 xti

Because only one factor indicator can be non-zero, we can combine combine all the relevant

factor indicators into one constraint for each attribute indicator Ati (Eq. 5.10):

∑
k s.t. xkj3xti

Zk
j ≤ Ati.

The set of attribute and indicator constraints in Eq. 5.8 and Eq. 5.10 will be denoted by A.

5.2.3.2 Hard constraintsH

The constraint set H compactly specifies the set of feasible outcomes XF ⊆ X by restricting

the choices of indicators Ati to allow only configurations in XF . One natural way to define

feasible configurations is by using logical constraints, which, in turn, can be encoded as linear

constraints on attribute indicators Ati (Chandru and Hooker, 1999). For example, in the car

rental domain (see Appendix C.1), we have logical constraints, such as “economy class cars do

not have cruise control”. Let Aeconomy
CarClass be a binary attribute indicator that specifies whether the

CarClass attribute is set to value economy; similarly, Atrue
CruiseControl indicates whether the car

has cruise control. A logical constraint “economy class cars do not have cruise control” can be

written as a linear constraint:

Aeconomy
CarClass + Atrue

CruiseControl ≤ 1.
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5.2.3.3 Maximum regret

In GAI models, the maximum regret of choosing a particular outcome x is

MR(x,U) = max
y∈XF , u∈U

(u(y)− u(x))

= max
y∈XF ,θ∈Θ

M∑
j=1

Nj∑
k=1

(Ck
yj
− Ck

xj
) θkj , (5.11)

subject to GAI structure constraints G and utility constraints U .

We can rewrite the maximum regret optimization using indicator variables. Instead of

maximizing over all y in XF , we can now maximize over a set of binary indicators Zk
j ; linear

feasibility constraints H on attribute values will in turn restrict the choices of indicators Ati to

allow only configurations in XF . The new optimization is:

MR(x,U) = max
y∈XF ,θ∈ΘU

M∑
j=1

Nj∑
k=1

(Ck
yj
− Ck

xj
) θkj ,

= max
{Ati,Zrj },θ

M∑
j=1

fj(Z
r
j ), subject to constraints A,H,G, and U ,

where

fj(Z
r
j ) =


∑Nj

k=1(Cj[r, k]− Ck
xj

) θkj , if Zr
j = 1,

0, if Zr
j = 0.

For effective computation, we would like to reformulate the above optimization as a linear

integer program. For that purpose, we introduce M variables Yj representing fj(Zr
j ), and en-

code the function fj(Zr
j ) as a series of linear constraints by using the “big-M” transformation:

MR(x,U) = max
{Ati,Zrj },θ

∑
j

Yj

subject to

Yj ≤
Nj∑
k=1

(Cj[r, k]− Ck
xj

) θkj +Mj(1− Zr
j ) ∀j ∈ 1..M, r ∈ 1..Nj,

and constraints A,H,G, and U . (5.12)
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Here, Mj is a large constant that provides an upper bound on fj(Zr
j ) for any Zr

j . In the

formulation above, the first constraint ensures that whenever Zr
j = 1 (i.e., whenever an “ad-

versary” picks the rth local configuration in factor Fj), the value of Yj gets “pushed up” to∑Nj
k=1(Cj[r, k]− Ck

xj
) θkj (since Mj(1− Zr

j ) is zero). If Zr
j = 0, the corresponding constraint

should not be active; in this case, the value of Yj is limited only by the large constant Mj .

Since the objective and all constraints are now linear, the problem is a linear MIP.

Example 5.4 We refer back to Example 3.10, which used a GAI utility function with two

factors I1 = {1, 2} and I2 = {2, 3}, and all binary attributes. From the dependency structure,

we know that

u2(x2, x3) = u(x[I2])− u(x([I1 ∩ I2]) = u(x0
1, x2, x3)− u(x0

1, x2, x
0
3),

where xi is a generic binary attribute that could take the values x0
i or x1

i . We concentrate on the

second factor, in which:

u2(x1
2) = u2(x0

2, x
0
3) = u(x0

1, x
0
2, x

0
3)− u(x0

1, x
0
2, x

0
3) = 0 θ1

2 + 0 θ2
2 + 0 θ3

2 + 0 θ4
2,

u2(x2
2) = u2(x1

2, x
0
3) = u(x0

1, x
1
2, x

0
3)− u(x0

1, x
1
2, x

0
3) = 0 θ1

2 + 0 θ2
2 + 0 θ3

2 + 0 θ4
2,

u2(x3
2) = u2(x0

2, x
1
3) = u(x0

1, x
0
2, x

1
3)− u(x0

1, x
0
2, x

0
3) = −1 θ1

2 + 0 θ2
2 + 1 θ3

2 + 0 θ4
2,

u2(x4
2) = u2(x1

2, x
1
3) = u(x0

1, x
1
2, x

1
3)− u(x0

1, x
1
2, x

0
3) = 0 θ1

2 − 1 θ2
2 + 0 θ3

2 + 1 θ4
2.

The coefficients Cx2 specify which basic outcomes are involved in defining the subutility val-

ues for factor F2:

Cx1
2

= C[1, :] = [0, 0, 0, 0],

Cx2
2

= C[2, :] = [0, 0, 0, 0],

Cx3
2

= C[3, :] = [−1, 0, 1, 0],

Cx4
2

= C[4, :] = [0,−1, 0, 1].
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Our goal is to find the maximum regret of choosing some outcome x, say, (x1
1, x

0
2, x

1
3).

Since x3
2 = (x0

2, x
1
3), the second factor structure coefficients are Cx3

2
= [−1, 0, 1, 0]. The MIP

for the maximum regret is as follows, with explicit constraints shown only for factor F2:

MR(x,U) = max
Y1,Y2,{At1,At2,At3,t=0..1}, {Zk1 ,Zk2 ,θk1 ,θk2 ,k=1..4}

Y1 + Y2

subject to



Y1 ≤
∑4

k=1(C1[r, k]− Ck
x1
1
) θk1 +M1(1− Zr

1), r = 1..4,

Y2 ≤ 0 θ1
2 + 0 θ2

2 + 0 θ3
2 + 0 θ4

2 + 100(1− Z1
2),

Y2 ≤ 0 θ1
2 + 0 θ2

2 + 0 θ3
2 + 0 θ4

2 + 100(1− Z2
2),

Y2 ≤ −1 θ1
2 + 0 θ2

2 + 1 θ3
2 + 0 θ4

2 + 100(1− Z3
2),

Y2 ≤ 0 θ1
2 − 1 θ2

2 + 0 θ3
2 − 1 θ4

2 + 100(1− Z4
2),

A,H,G, and U .

Here, the large M-constant M2 is 100.

5.2.3.4 Minimax regret

For a feasible utility set U, the minimax regret level MMR(U) can be determined by the

following optimization:

MMR(U) = min
x∈XF

max
y∈XF ,u∈U

Ru(x,y)

= min
x∈XF ,m

m,

subject to m ≥ Ru(x,y), ∀ y∈XF , u ∈ U.

In this way, we convert a min-max problem to a minimization problem over x ∈ XF only, at

the expense of introducing an infinite (continuous) set of constraints (one constraint for each

pair y ∈ XF , u ∈ U).

Due to the form of the constraints, we are interested in the pairwise regret Ru(x,y) as a

function of x, assuming the adversary’s choice of y and u is known. For GAI utilities, the
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utility function u is fully determined by the GAI parameter vector θ = θ1
1 . . . θ

N1
1 . . . θNMM . We

denote the pairwise regret of choosing x given y and θ as R(x|y,θ):

R(x|y,θ) = Rθ(x,y) =
M∑
j=1

Nj∑
k=1

(Ck
yj
− Ck

xj
) θkj ,

=
M∑
j=1

Rj(xj|yj,θj), (5.13)

where Rj(x
r
j |yj,θj) = grj (y,θ) is the factor regret of choosing the rth local configuration in

factor Fj when adversary’s choice is y under the utility function represented by θ:

Rj(x
r
j |yj,θj) =

Nj∑
k=1

(Ck
yj
− Ck

xrj
) θkj = grj (y,θ).

Using factor indicators Zk
j , the pairwise regret can now be written as:

R(x|y,θ) =
M∑
j=1

Nj∑
k=1

gkj (y,θ)Zk
j . (5.14)

where indicators are instantiated to encode the outcome x.

Knowing y and θ, factor regrets gkj (y,θ) can be precomputed for every factor configura-

tion. Let y∗θ be the best outcome for a utility function with parameters θ:

y∗θ = argmax
y∈XF

u(y|θ).

By using factor indicators, we can recast the MMR computation as a linear MIP:

MMR(U) = min
{Ati},{Zkj },m

m, subject to (5.15)
m ≥

∑M
j=1

∑Nj
k=1 g

k
j (y∗θ,θ)Zk

j , ∀θ ∈ ΘV ,

A,H,

where ΘV ⊂ ΘU is the (finite) set of vertices of the GAI utility polytope ΘU defined by the

constraints U and G. We can restrict the space of parameters θ because grj (y,θ) =
∑Nj

k=1(Ck
yj
−

Ck
xrj

) θkj is a linear function of θkj , and therefore any active constraints in Eq. 5.15 feature only

some θ ∈ ΘV (i.e., constraints for θ ∈ ΘU\ΘV are redundant). This makes the number
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of constraints |ΘV | exponential with respect to the number of utility parameters (rather than

infinite). For any realistic problem size, a direct optimization approach is not tractable.

However, the number of active constraints at the optimal solution is usually very small.

We can avoid the exponential number of constraints (one for each adversarial utility choice

θ ∈ ΘV ) by using a constraint generation procedure that iteratively generates a small set

of active constraints at the optimal solution. Such a way of dealing with a large number of

constraints is common in operations research, and can be viewed as a form of Benders’ de-

composition (Benders, 1962; Nemhauser and Wolsey, 1988; Boutilier et al., 2006). To apply

constraint generation technique, we solve the MIP in Eq. 5.15 with only a subset of constraints,

generate and add the maximally violated constraint at the solution of this relaxed MIP (by solv-

ing the max regret MIP in Eq. 5.12 for adversary’s choice y,θ), and repeat until no violated

constraints are found.

Intuitively, at each iteration, we solve the MIP in Eq. 5.15 using only a limited set W of

adversarial choices of pairs of outcomes and utilities:

MMR(U,W ) = min
{Ati},{Zkj },m

m, subject to (5.16)
m ≥

∑M
j=1

∑Nj
k=1 g

k
j (y,θ)Zk

j , 〈y,θ〉 ∈ W

A,H.

The setW contains pairs of outcomes and utilities that the adversary can use to increase the

maximum regret. In this way, we are computing minimax regret against a restricted adversary

that can only use choices in W to compute the maximum regret of the optimal solution x

obtained by solving the restricted MMR optimization problem in Eq. 5.16. The minimax regret

value MMR(U,W ) provides a lower bound on the true minimax regret MMR(U) (which is

computed by considering a “stronger” unrestricted adversary).

Given a solution x to the restricted MMR optimization problem, we can find the max-

imum regret MR(x,U) of x using Eq. 5.12, as well as the adversary choice 〈yw,θw〉 =

argMR(x,U) that achieves that regret (we introduce the arg notation to simplify the de-
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Input: Set of feasible outcomes XF (defined by constraintsH), set of feasible utilities
U, set of attribute and factor consistency constraints A

Output: Minimax regret solution triple 〈x∗,yw,θw〉

LB ← −∞ // lower bound on minimax regret
UB ←∞ // upper bound on minimax regret
i← 0
x0 ← arbitrary outcome in XF

W 0 ← ∅ // initial set of restricted adversary choices
while LB 6= UB do

UB ←MR(xi,U) // using Eq. 5.12
yi,θi ← argMR(xi,U) // yi,θi are adversary choices that achieve MR(xi,U)

i← i+ 1
W i ← W i−1 ∪ {〈yi−1,θi−1〉}
LB ←MMR(U,W i) // using Eq. 5.16
xi ← argMMR(U,W i) // xi is the outcome that achieves LB

end
x∗ ← xi

yw,θw ← argMR(x∗,U)

Figure 5.2: MMR computation procedure using constraint generation. At each iteration, we compute
the minimax-regret optimal choice xi against a restricted adversary that can only use out-
come and utility pairs from the set W i.

tailed description of the algorithm below). The maximum regret MR(x,U) provides an up-

per bound on the true minimax regret, since we can always stop the process and recommend

outcome x. We add the new adversary choice 〈yw,θw〉 to the set W (thus making the adver-

sary “stronger”), and repeat the process until the lower bound equals to the upper bound (i.e.,

MMR(U,W ) = MR(x,U) for some x). The procedure is guaranteed to arrive at the optimal

solution in a finite number of iterations; in theory, it is not guaranteed to finish until it has

a full set of adversary choices W (of size |XF |, corresponding to every outcome in XF ). In

practice, however, the number of iterations is usually small, and, therefore, we can compute

the minimax regret by solving a series of small MIPs.

The detailed algorithm is shown in Figure 5.2.
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Figure 5.3: A screenshot of an apartment database used in the UTPREF recommendation system. Each
apartment is described by nine discrete attributes and price.
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5.2.4 Database problems

The MIP formulations above assume that the space of feasible configurations is defined by a

set of constraints H specifying allowable combinations of attributes. Alternatively, the set of

choices may be the elements of a multiattribute item database, in which the set of feasible

outcomes is specified explicitly, namely, as the set of all items in the database. Instead of con-

straints specifying which configurations are not valid, in database problems, we have a finite

(but possibly large) list of valid multiattribute outcomes. Common examples of multiattribute

item databases include online store catalogs, where each product in a category can be ade-

quately described by a set of attributes (e.g., computers or video cameras), real estate domains

(houses for rent or sale), new and used car sales, and others. Figure 5.3 shows an example of an

apartment rental database, where each apartment is defined by ten attributes, including price.

Preference-based search of such multiattribute item databases can be effected using minimax

regret as well; the computation of minimax regret is, however, different.

In a database setting, let XF ⊆ X be a finite set of outcomes in a database, and D = |XF |

be the database size. The items in the database will often be enumerated from 1 to D:

XF = {x1,x2, . . . ,xD}.

In principle, the minimax regret optimal solution can be determined by finding the pairwise

regret for every pair of items in the database, and choosing an item with the minimum max

regret. Minimax regret for a choosing an item from a database can be computed by using only

the pairwise regret equation Eq. 5.6; because of the finite size of the database, we do not use

equations 5.12 and 5.15 for computing max and minimax regret. For any two items xi and xj

in the database, the pairwise regret R(xi,xj,U) can be found using Eq. 5.6. The max regret

MR(xi,U) of choosing the ith item is determined by considering its pairwise regret with each

other item in XF . To determine the optimal item or product (i.e., that with the minimax regret),

we can compute the max regret of each item in the database, and choose the one with the least
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3 2 2 7    7   
3 4 6 4    6
2 5 8 7    8
2 8 9 3    9

MIN

MAX MR

Figure 5.4: An example of a pairwise regret matrix L for a four-item database. The MIN player chooses
rows, while the MAX player chooses columns. The maximum regrets of each row are shown
in the right column. The MIN player’s choice is Row 2, with the smallest maximum regret
of 6.

max regret:

x∗ = xi
∗

= argmin
i≤D

max
j≤D

R(xi,xj,U). (5.17)

5.2.4.1 Pairwise regret matrix

Let L be the D × D matrix whose entries contain the pairwise regrets of all possible choices

by the two players:

L[i, j] = R(xi,xj,U).

The process of finding the MMR-optimal option can be viewed as a game between two players,

in which the MIN player is trying to minimize the maximum regret, while the MAX player’s

(or adversary’s) goal is to maximize the regret of the MIN player’s choice. The MIN player

plays the MMR game by picking rows, while the MAX player chooses columns. The worst-

case complexity of the algorithm is O(D2) evaluations of pairwise regret. Pairwise regret

computation is polynomial in the size of the GAI utility function (because each pairwise regret

evaluation requires solving a linear program with a number of variables proportional to the

number of GAI parameters). Figure 5.4 shows an example of the MMR matrix L, and the

optimal solution.

5.2.4.2 Minimax search with pruning

The matrix game between the MIN and MAX players can also be represented by the two-ply

minimax tree with the MIN root node nMIN , D MAX nodes {nMAX
i , i = 1, . . . , D}, and D2
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3

MIN

MAX

4 63 2 2 7 4 2 5 8 7 2 8 9 3

7 9

6

6 8

1        2         3       4          5        6          7       8        9       10       11    12       13       14      15     16  

3 2 2 7
3 4 6 4
2 5 8 7
2 8 9 3

MIN

MAX

1       2       3        4

5        6       7       8

   9      10      11   12

13      14     15     16

Figure 5.5: The minimax search tree for the four-item regret matrix introduced in Fig. 5.4. The small
numbers indicate the order of search steps (in this case, it’s the depth-first traversal).

terminal (leaf) nodes {nTij, i = 1, . . . , D , j = 1, . . . , D}. Each MIN and MAX node has D

directed edges, corresponding toD choices (i.e., outcomes in XF ) available to each player. The

unique path to each terminal node represents a specific pair of choices by the MIN and MAX

players. The value of a terminal node nTij reachable by following edge i from the root MIN

node and then edge j from the MAX node is the pairwise regret of R(xi,xj,U) of choosing xi

rather than xj . The terminal values can be “backed up” to provide values for the internal MAX

nodes and the root MIN node. The value of a terminal node nTij is

v(nTij) = R(xi,xj,U).

The value of a MAX node nMAX
i is the maximum of the values of its children (terminal nodes):

v(nMAX
i ) = max

j∈children(nMAX
i )

v(nTij).

The value of the root MIN node nMIN is the minimum of the values of its children (MAX

nodes):

v(nMIN) = min
i∈children(nMIN )

v(nMAX
i ).

To compute the MMR optimal choice, we find the values of MAX nodes, and then choose

the MAX node with the smallest value. Figure 5.5 shows a minimax search tree for the sample
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3

MIN

MAX

4 63 2 2 7 4 2 5 8 7 2 8 9 3

7

6 3 2 2 7
3 4 6 4
2 5 8
2 8

MIN

MAX

6 >8

1        2         3       4          5         6         7      8         9        10     11                 12      13

1       2       3        4

5        6       7       8

   9      10      11

12      13

>8

Figure 5.6: Minimax search with alpha pruning. By the time we get to the third MAX node, β is 6; after
step 11, we know that the third MAX node’s value is at least 8, and therefore the remaining
child does not need to be visited.

database with four items. The complete minimax search takes O(D2) steps.

However, an exhaustive search of the minimax tree is generally not necessary. We can

employ known pruning techniques to reduce the number of costly pairwise regret evaluations

at the leaves (which require solving linear programs) and potentially achieve linear (rather

than quadratic) performance in practice. Figures 5.6, 5.7, and 5.8 describe and illustrate three

pruning techniques: alpha pruning, beta pruning, and combined alpha-beta pruning (Pearl,

1984).

Alpha pruning

Let β be the smallest known upper bound on the value v(nMIN) of the root MIN node; at the

outset, it is initialized to +∞. At any time during the search, we know that the final MMR

value cannot be greater than β; β can only decrease in value during the search.

For each MAX node nMAX
i (corresponding to row i in the L matrix), let αi be the largest

known value among its children (equivalently, the largest known value in the ith row of L); all

αs are initialized to −∞. At any time during the search, we know that the value of MAX node

nMAX
i is at least αi; αs can only increase in value during the search.
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3

MIN

MAX

4 63 2 2 7 4 2 5 8 7 2 8 9 3

7 9

6 3 2 2 7
3 4 6 4
         7 
2 8 9 3

MIN

MAX

6

1        2         3       4         12       13       11     5                                      6         8         9       10       7 

1       2       3        4

12      13     11      5

6

8       9       10       7

>7

Figure 5.7: Minimax search with beta pruning. By default, the first MIN move is 1, i.e., we explore
the first MIN branch/row (steps 1,2,3,4). If MIN chose 1, MAX would counter with move
4, whose value is 7; we therefore set β = 7 (minimax regret cannot be higher than 7). Now,
we search for the next MIN branch to explore by finding the best MIN move to counter the
previous MAX move 4 (steps 5,6,7). In the process, we set α2 = 4, α3 = 7, and α4 = 3.
The next MIN move is therefore 4, to which MAX would reply with move 3, whose value is
9 (steps 8,9,10). Once again, we search for the best MIN move against the last MAX move
3. Because we already explored MIN moves (rows) 1 and 4, and move 3 can be beta-pruned
because α3 = 7 is the same as β = 7, the last remaining branch to explore is 2 (steps
11,12,13). Its max value is 6, and therefore the minimax value is also 6.

Figure 5.6 shows an example of alpha pruning, during which some MAX node children

do not need to be explored. Assume a depth-first traversal of the tree; if, while searching the

children of a MAX node nMAX
i , αi becomes greater than (or equal to) β, we do not need to

consider the remaining children of the MAX node. This pruning occurs because, by definition,

αi ≤ v(nMAX
i ), β ≥ v(nMIN); if αi ≥ β, then v(nMAX

i ) ≥ β ≥ v(nMIN), and therefore

the MAX node nMAX
i will not be chosen by the MIN player. By excluding some terminal

nodes from the search, pruning can significantly reduce the MMR computation time, because

terminal node evaluations require performing costly LP optimizations.

Beta pruning

Beta pruning affects the children (branches) of the root MIN node. Instead of exploring the

MIN node’s branches in some predefined order (like depth-first traversal), we pick the next
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branch (row) to explore based on some heuristic. In particular, we experiment with what is

known in the AI literature as the “killer heuristic” (Akl and Newborn, 1977; Pearl, 1984):

choose the branch that minimizes the value with respect to the current MAX choice (which

was the best MAX choice with respect to the previous MIN branch). The underlying intuition

for the effectiveness of this strategy relies on the hypothesis that in many real-life scenarios,

a particular MAX choice (column) will be good against many MIN choices (as we will show

below, such heuristic does not work well for randomly generated MMR game instances).

Let j∗ be the current MAX “killer” move for MAX node nMAX
i (i.e., with respect to the

MIN choice i):

j∗ = argmax
j∈children(nMAX

i )

v(nTij).

Then, the next branch i′ to explore is the one that corresponds to the best MIN choice if MAX

chooses j∗:

i′ = argmin
i∈children(nMIN )

v(nTij∗).

Beta pruning occurs if, when going through all MIN branches to find the next one to explore,

some MAX node’s α value is greater than β. In that case, the corresponding MIN branch

(row) can safely be removed from further consideration. Figure 5.7 shows an example of beta

pruning, and describes the steps in more detail.

Alpha-beta pruning

Alpha-beta pruning is like beta pruning (rows are chosen according to a certain heuristic), but

the MAX node children are also alpha-pruned. There’s a tradeoff between beta and alpha-

beta pruning: with no alpha pruning, we get better MAX choices for the heuristic (since we

always traverse all children of a MAX node); on the other hand, for each MAX node, alpha-

beta pruning explores fewer children, but provides a possibly inferior choice for the MIN node

choice heuristic. Experimental results in the next section show very little distinction between

beta and alpha-beta pruning. Figure 5.8 shows an example of alpha-beta pruning, and describes

the steps in more detail.
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MAX

4 63 2 2 7 4 2 5 8 7 2 8 9 3

7

6 3 2 2 7
3 4 6 4
         7 
2 8    3

MIN

MAX
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1        2         3       4         11       10       12     5                                      6         8         9                 7 

1       2       3        4

11     10     12      5
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>7 >8

Figure 5.8: Minimax search with alpha-beta pruning. The search steps are very similar to the beta
pruning case above. By default, the first MIN move is 1, i.e., we explore the first MIN
branch/row (steps 1,2,3,4). If MIN chose 1, MAX would counter with move 4, whose value
7; we set β = 7 (minimax regret cannot be higher than 7). Now, we search for the next MIN
branch to explore by finding the best MIN move to counter the previous MAX move 4 (steps
5,6,7). In the process, we set α2 = 4, α3 = 7, and α4 = 3. The next MIN move is therefore
4, to which MAX would reply with move 2, whose value is 8 (steps 8,9). This differs from
the beta pruning case, because MAX now also performs alpha pruning and stops exploring
as soon as it finds a leaf node whose value is equal to or larger than β (in this case its value
was 8 in step 9). Once again, we search for the best MIN move against the last MAX move
2. Because we already explored MIN moves (rows) 1 and 4, and move 3 can be beta-pruned
because α3 = 7 is the same as β = 7, the last remaining branch to explore is 2 (steps
10,11,12). Its max value is 6, and therefore the minimax value is also 6.
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(b) Random matrix. The second-worst curve is beta

pruning. Alpha and alpha-beta pruning exhibit

almost the same behavior.

Figure 5.9: Minimax search performance on an actual database of 62 apartments (a), and a database
with randomly generated pairwise regret values (b). The curves show how the number of
pairwise regret evaluations required (each of which is a costly LP optimization) varies with
the database size.

The pseudo-code algorithm for the alpha-beta pruning for MMR computation in database

problems is provided in the Appendix D.

5.2.4.3 Pruning performance

Figure 5.9(a) shows the impact of pruning during the minimax search of an actual database of

62 apartments described with 8 attributes, and on a database of the same-size with randomly

generated pairwise regret values (Figure 5.9(b)). The x axis is the size of the database, ranging

from 1 to 62; the y axis plots the number of pairwise-regret evaluations required (each of

which is a costly LP optimization) during the minimax search. For each size of the database,

the number of search steps is averaged over all possible MIN starting choices (since initial MIN

choice is arbitrary, and can heavily influence the search).

The running time of exhaustive search grows quadratically with the database size. However,

as shown in Figure 5.9(a), pruning helps a lot, resulting in effectively linear performance on the

real database. Beta and alpha-beta pruning work best, verifying the intuition that in structured
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Input: Set of feasible outcomes XF , set of queries Q, set of query costs {cq|q ∈ Q},
sets of responses {Aq|q ∈ Q}, sets of prior constraints G and U (that specify the
initial space of feasible utilities U), query scoring function S(q|U,XF ),
termination criteria T

Output: Recommended outcome x∗ and its max regret MR(x∗,U)

x∗ ← argminx∈XF
MR(x,U)

while termination criteria T not met do
q∗ = argmaxq∈Q S(q|U,XF )− cq
pose query q∗ to the user
receive response aq
update the constraints U (and, therefore, U) based on aq
x∗ ← argminx∈XF

MR(x,U)

end

Figure 5.10: A generic procedure that supports minimax regret-driven preference elicitation through a
sequence of interactions (queries and responses) between the decision support system and
the user (decision maker).

problems, there are a few MAX choices that are very good for multiple MIN choices.

On a random problem, pruning is not effective and the running time growth remains quadratic.

Also, as expected, beta pruning performs worse than alpha pruning.

5.3 Elicitation

The minimax regret criterion can be used both for making robust decisions under strict un-

certainty and for driving the elicitation process. In contrast to the Bayesian elicitation setting,

the quality (difference from optimal) of a minimax regret optimal decision can be bounded;

these bounds can be tightened with further elicitation effort. At every step of an elicitation

process, the system rates available queries according to a scoring function that approximates

each query’s potential to reduce the minimax regret level. A user’s response imposes additional

constraints on the feasible utility space U, which results in a new decision situation with a new

level of minimax regret (the level of regret cannot increase with more information). The pro-

cess continues until the minimax regret reaches some acceptable level, elicitation costs (e.g.,

the number of queries the user has to answer) become too high, or some other condition from
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the set T of termination criteria is met.

Figure 5.10 shows the generic minimax-regret driven elicitation framework assumed in

this chapter. In this framework, the decision support system interacts with the user by posing

queries from the set of available queries Q, and, for each query q ∈ Q, receive user responses

(answers) from the set Aq. Each response aq provides additional information about the feasible

utility region U and leads to an updated feasible utility region Ua. Since responses impose

constraints on utility space U, they cannot increase the size of the feasible utility space:

Ua ⊆ U for any response a ∈ ∪qAq. (5.18)

This leads to the following observation:

Observation 5.1 The minimax regret level cannot increase with additional information about

user utilities:

MMR(Ua) ≤MMR(U) for any response a. (5.19)

Proof Because of Eq. 5.18, for any pair of outcomes x and y, the pairwise regret under Ua is

the same or lower than under U, which leads to the inequality MMR(Ua) ≤MMR(U):

Ua ⊆ U ⇐⇒

max
u∈Ua

Ru(x,y) ≤ max
u∈U

Ru(x,y) for all x,y ∈ X ⇐⇒

R(x,y,Ua) ≤ R(x,y,U) for all x,y ∈ X ⇐⇒

max
y

R(x,y,Ua) ≤ max
y

R(x,y,U) for all x ∈ X ⇐⇒

MR(x,Ua) ≤MR(x,U) for all x ∈ X ⇐⇒

min
x
MR(x,Ua) ≤ min

x
MR(x,U) ⇐⇒

MMR(Ua) ≤MMR(U). � (5.20)

Response model

Even though the minimax regret decision criterion does not take into account any probabilistic

knowledge about the user utilities, such knowledge is potentially very valuable for driving the
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elicitation process. A good elicitation policy would ask queries that are effective in reducing

minimax regret levels. For each query, we need to consider all possible situations resulting

from every possible response. If we do not know how likely each response is, the value of

a query can be determined by non-probabilistic response aggregation operators, such as min

or max. However, judging the value of a query by assuming the best or worst response often

leads to unsatisfactory policies that are either too optimistic or too cautious, and are liable to

stall without reducing the minimax regret. An alternative solution is to assume a probabilistic

response model, similar to the Bayesian case discussed in the previous chapter. The response

model Pr(aq|q, u) specifies the probability of receiving the response aq to the query q under

utility function u. If the users always answer accurately, the response model Pr(aq|q, u) is a

deterministic mapping from a query and utility function to a response aq. We assume such

noiseless responses in our minimax regret based models and practical implementations. If π

is the probability distribution over the feasible utility space U, the likelihood of receiving a

particular response depends only on π:

Pr(aq|q, π) = Eu∼π[(Pr(aq|q, u)].

In our elicitation strategies, for computational reasons and due to the absence of better prior

distributions over utilities, we assume a uniform distribution over feasible utilities.

5.3.1 Myopically optimal strategy (MY)

With sufficient computational resources, one could employ a myopically optimal strategy (de-

noted MY, as in (Boutilier et al., 2006)) which computes exact MMR levels for each response

to every query, and chooses the query with the lowest expected post-response MMR level. We

can define a myopic score of a query q as the expected reduction in minimax regret:

SMY (q) = MMR(U)− Ea[MMR(Ua)], (5.21)

where Ua is the set of feasible utilities resulting from response a to the query q, and expectation

is taken with respect to the probabilities of all responses to q. The MY strategy recommends
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the query with the highest MY score:

q∗ = arg max SMY (q),

where q ranges over all possible queries.

The MY strategy is suboptimal, because it greedily selects queries that provide best imme-

diate reductions in regret, thus likely missing sequences of queries that lead to even better re-

sults. By performing a k-step lookahead, this strategy can approximate the sequentially optimal

strategy as k increases. However, in practice, even a one-step exact lookahead is prohibitively

expensive for problems where real-time interactive elicitation is required.

The MY strategy serves as a good baseline when comparing other strategies, since most

other strategies discussed below are approximations of the myopically optimal strategy. Viap-

piani and Boutilier (2009) explore the application of the MY strategy to choice queries, which

present the user with a set of options to choose from.1

5.3.2 Current solution strategy (CS)

Since computing minimax regret for every response to each possible query is likely infeasi-

ble, practical querying strategies rely on heuristic criteria for evaluating potential impact of

queries. One effective approach is to concentrate only on utility parameters that are directly

involved in the current solution of the minimax regret optimization (Boutilier et al., 2004c,

2006; Braziunas and Boutilier, 2007). The current solution triple 〈x∗,yw, uw〉, consisting of

the regret-minimizing outcome x∗, the adversary’s witness yw, and the utility function uw

chosen by the adversary, defines the minimax regret level MMR(U) = uw(yw) − uw(x∗).

Additional constraints on the utility parameters directly involved in determining uw(yw) and

uw(x∗) are likely to change the MMR level, either by increasing uw(x∗) or reducing uw(yw).

Focusing on relevant parameters results in elicitation that is directed at reducing minimax re-

1Viappiani and Boutilier (2010) extend the myopically optimal choice query optimization to the Bayesian
setting.
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gret, rather than just overall uncertainty over feasible utilities. This is the main intuition behind

current solution based strategies.

The CS score of a query q indirectly measures the query’s potential to reduce minimax

regret by considering its impact only on the current solution. We define SCS(q) to be the

expected change in the pairwise regret of the current solution due to a response to the query q:

SCS(q) = MMR(U)− Ea[R(x∗,yw,Ua)] = MMR(U)− Ea[Rua(x
∗,yw)], (5.22)

where

ua = max
u∈Ua

Ru(y
w,x∗).

That is, the CS score computes the expected reduction in MMR regret under the constraint that

the current solution outcomes x∗ and yw do not change.

For GAI utilities, every response a adds an additional linear constraint on GAI utility pa-

rameters to the constraint set U , resulting in a new constraint set Ua. The pairwise regret

R(x∗,yw,Ua) under Ua can be found by solving a linear program (Eq. 5.6):

R(x∗,yw,Ua) = max
θ

M∑
j=1

Nj∑
k=1

(Ck
ywj
− Ck

x∗j
) θkj , subject to G and Ua. (5.23)

The CS score SCS(q) for each query is obtained by solving a linear program above for each

response a, and then averaging response values weighted by response likelihoods.

While certainly faster than doing a complete one-step lookahead (as in the MY strategy),

the CS strategy is still expensive if the space of possible queries and their responses is large, as

it requires solving a linear program for every response to every query. In the following section,

we present a heuristic scoring function that incorporates further approximations designed to

speed up the query selection computation.

5.3.3 UTPREF strategy (UT)

The UTPREF (UT) strategy is an approximation of the CS strategy that is both effective in

reducing MMR level and fast to compute. It is a heuristic strategy employed by the UTPREF
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recommendation system (described in Chapter 6) that is designed specifically for GAI utilities

and limited to the query types listed in Section 3.3. The UT scoring function is much faster to

evaluate as it avoids having to solve a set of linear programs for each query.

Consider the minimax regret MMR(U) in a GAI model, defined by the solution triple

〈x∗,yw, uw〉 (Eq. 5.6):

MMR(U) = uw(xw)− uw(x∗)

=
M∑
j=1

Nj∑
k=1

(Ck
ywj
− Ck

x∗j
) θkj

=
M∑
j=1

Nj∑
k=1

Dk
j θ

k
j , (5.24)

where Dk
j = Ck

ywj
−Ck

x∗j
, and θkj are GAI parameters that define the witness utility function uw:

uw(x) =
M∑
j=1

Nj∑
k=1

Ck
xj
θkj .

In the equation MMR(U) =
∑M

j=1

∑Nj
k=1 D

k
j θ

k
j , each GAI parameter θkj contributes Dk

j θ
k
j

to the MMR level. A response to a query can result in an additional constraint on the parameter

θkj , changing the value of the product Dk
j θ

k
j , and, potentially, the MMR level as well.

Upper and lower parameter bounds At any point during an elicitation process, the possible

values of utility parameters are specified by the set of linear constraints U . We denote the lower

and upper bounds for a utility parameter θkj as bθkj c and dθkj e:

bθkj c = min
θ
θkj , subject to G and U ,

dθkj e = max
θ

θkj , subject to G and U . (5.25)

Such bounds can be computed by solving two simple linear programs for each parameter.

If such computations are too expensive, lower and upper bounds for all parameters can be
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approximated by solving two linear programs for all parameters at once:

min
θ

∑
j

∑
k

θkj , subject to G and U ,

max
θ

∑
j

∑
k

θkj , subject to G and U . (5.26)

The solution to the first program approximates lower bounds for all parameters at once; sim-

ilarly, the solution to the second program approximates the upper bounds. Since approximate

bounds are guaranteed to lie within the real parameters bounds [bθkj c, dθkj e], the approximate

bounds are “safe” to use in bound queries. As long as bound queries ask about the point within

approximate (or real) bounds, the user cannot provide an inconsistent response.

Halve-the-largest-gap heuristic We refer to the difference between the upper and lower

bound of some utility parameter as its gap:

gap(θkj ) = dθkj e − bθkj c. (5.27)

If we could pose bound queries to the user about any GAI utility parameter, a promising ap-

proach would be to query about the mid-point of the gap of a parameter for which the quantity

|Dk
j |gap(θkj ) is the largest. Let bθkj c ≤ b ≤ dθkj e be the bound for the query “Is θkj ≥ b?”, de-

noted as qB[θkj , b]. Without probabilistic prior information about user utilities, we make a sim-

plifying assumption that the probability of a positive response is Pr(yes|qB[θkj , b]) =
dθkj e−b
gap(θkj )

,

and the probability of a negative response is Pr(no|qB[θkj , b]) =
b−bθkj c
gap(θkj )

. As we noted before,

in the equation MMR(U) =
∑M

j=1

∑Nj
k=1 D

k
j θ

k
j , each GAI parameter θkj contributes Dk

j θ
k
j to

the MMR level. IfDk
j is positive, then we make a simplifying assumption that θkj = dθkj e, since

otherwise MMR(U) could be increased by increasing the value of θkj . Because of constraints

U tying together many different parameters, such assumption is not always correct; however, it

is practical enough for the heuristic UTPREF query strategy. Similarly, if Dk
j is negative, then

we assume that θkj = bθkj c. If Dk
j is positive, a negative response to the query qB[θkj , b] would

decrease the contribution of the parameter θkj by Dk
j (dθkj e− b), since now b is the upper bound
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on θkj . A positive response would not change anything, since the current value of θkj , chosen by

the adversary, is already set to dθkj e. As with MY and CS, the expected change in MMR(U)

is the score of the bound query qB[θkj , b]:

SUT (qB[θkj , b]) = Pr(yes|qB[θkj , b]) 0 + Pr(no|qB[θkj , b]) D
k
j (dθkj e − b)

= (1−
dθkj e − b
gap(θkj )

) Dk
j (dθkj e − b).

IfDk
j is negative, then the opposite holds true. A negative response would not change anything,

since the current value of θkj , chosen by the adversary, is already set to the lowest bound bθkj c. A

positive response to the query qB[θkj , b] would further decrease the contribution of the parameter

θkj by |Dk
j | (b − bθkj c), by raising the lower bound of θkj to b. The score of the bound query

qB[θkj , b] when Dk
j is negative is:

SUT (qB[θkj , b]) = Pr(yes|qB[θkj , b]) |Dk
j |(b− bθkj c) + Pr(no|qB[θkj , b]) 0

=

(
1−

b− bθkj c
gap(θkj )

)
|Dk

j | (b− bθkj c).

Because b is a continuous bound, ranging from bθkj c to UBθkj , there are an infinite number of

bound queries. However, under the assumptions stated above, the query score is maximized

when b is the middle of the gap, both when Dk
j is positive and when Dk

j is negative.

Observation 5.2 The bound query score SUT (qB[θkj , b]) is maximized when b is the middle of

the gap(θkj ).

Proof WhenDk
j is positive, SUT (qB[θkj , b]) = (1− dθ

k
j e−b

gap(θkj )
) Dk

j (dθkj e−b). Taking the derivative

with respect to b, we obtain

dSUT (qB[θkj , b])

db
= −Dk

j (1−
2

gap(θkj )
(dθkj e − b).

By setting it to zero, and solving for b, we get b = dθkj e −
gap(θkj )

2
= 0.5(bθkj c + dθkj e). Simi-

larly, when Dk
j is negative, solving for b also leads to b = 0.5(bθkj c + dθkj e). Thus, the score

of a bound query is maximized when the query point b∗ is the middle of the gap. The score
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itself is SUT (qB[θkj , b
∗]) = 0.5 |Dk

j |
bθkj c+dθkj e

2
, since with probability 0.5, the contribution of θkj

decreases by half of the gap times |Dk
j |. �

The bound queries that we just discussed involve arbitrary GAI parameters θkj = u(bj,k)

(or, more directly, arbitrary global basic outcomes bj,k). We would not normally directly pose

such bound to users, because they might be difficult to answer. One exception is anchor bound

queries (ABQs) that are a subset of general bound queries; here, the basic outcomes are special

in a sense that they are the best and the worst outcomes in each factor (i.e., anchors). However,

the general bound queries are useful for analysis and intuitive understanding of the heuristic

UT strategy. Such queries are roughly equivalent to the bound queries described by Boutilier

et al. (2006), where they are used in a similar way in an HLG (halve-the-largest-gap) elicitation

strategy.

The UT strategy, employed by the UTPREF recommendation system, is based on similar

heuristic evaluations of other query types, viz., local bound, anchor bound, local comparison

and anchor comparison query types. In all cases, the main intuition is the same as for the

bound queries discussed above: consider the GAI parameters that define the current MMR

level MMR(U) =
∑M

j=1

∑Nj
k=1 D

k
j θ

k
j , and choose queries that are best at potentially reducing

the quantity
∑M

j=1

∑Nj
k=1D

k
j θ

k
j , with an expectation that the heuristically evaluated impact of a

query on this quantity is positively correlated with its actual impact on reducing the minimax

regret. In spirit, the UT strategy is similar to the CS strategy. However, it employs more

approximations and heuristics (e.g., ignoring constraints U and G and using loose parameter

bound approximations) to achieve much faster computational efficiency. Next, we describe the

scoring functions for different types of queries.

5.3.3.1 Scoring anchor bound queries (ABQs)

Anchor bound queries (introduced in Section 3.3.2.1) involve global factor anchors bj,> and

bj,⊥, i.e., the best and worst outcomes with all attributes outside the factor Fj fixed at their
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reference levels. A query qAB[θ>j , b] asks the user to specify whether the anchor utility θ>j =

u(bj,>) is greater than the specified bound b (similarly for bj,⊥). By limiting the bound queries

to anchor outcomes we can arguably make such queries easier to answer, since most attributes

(i.e., attributes outside the given factor) are fixed at reference levels and the attributes inside

the factor are set to either best or worst levels.

Since ABQs are a special case of general bound queries considered above, we could simply

score them using the “largest gap” heuristic described above:

SUT (qB[θ
>/⊥
j , b∗]) = 0.5 |D>/⊥j |

bθ>/⊥j c+ dθ>/⊥j e
2

, for all j = 1..M.

However, by its nature, the scoring function above dismisses all parameters whose coefficients

Dk
j are zero in the equation MMR(U) =

∑M
j=1

∑Nj
k=1D

k
j θ

k
j . Since the number of parameters

with zero coefficients (including anchor parameters) is large, for many anchors their bound

query score will often be zero. Treating anchor outcomes like any regular basic outcome un-

dervalues their importance in defining (and potentially reducing) the MMR level. Anchor

outcomes are special for two reasons:

a) all factor parameter values are bounded by the top and bottom anchor values, and there-

fore an additional constraint on an anchor parameter is likely to impact many other pa-

rameters:

θ⊥j ≤ θkj ≤ θ>j for all k = 1..Nj, for all j = 1..M ;

b) and, local bound queries impose constraints of the form θij− bθ>j − (1− b)θ⊥j ≥ 0, which

further tie anchor parameters to other factor parameters.

Thus, anchor parameters are quite influential in the constraint set U . A better way of scoring

ABQs uses the local value parameterization of GAI utilities.

A local value function vj(xkj ) is related to the GAI parameters θkj through the following

transformation (Section 3.2.3):

vkj = vj(x
k
j ) =

θkj − θ⊥j
θ>j − θ⊥j

,
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where an LVF parameter vkj denotes the value vj(xkj ). The MMR equation can be rewritten as

follows:

MMR(U) =
M∑
j=1

Nj∑
k=1

(Ck
ywj
− Ck

x∗j
) θkj

=
M∑
j=1

(θ>j − θ⊥j )

Nj∑
k=1

(Ck
ywj
− Ck

x∗j
)

θkj
θ>j − θ⊥j

=
M∑
j=1

(θ>j − θ⊥j )

Nj∑
k=1

(Ck
ywj
− Ck

x∗j
) (

θkj
θ>j − θ⊥j

−
θ⊥j

θ>j − θ⊥j
)

=
M∑
j=1

(θ>j − θ⊥j )

Nj∑
k=1

(Ck
ywj
− Ck

x∗j
)
θkj − θ⊥j
θ>j − θ⊥j

=
M∑
j=1

(θ>j − θ⊥j )

Nj∑
k=1

(Ck
ywj
− Ck

x∗j
) vkj

=
M∑
j=1

(θ>j − θ⊥j ) rj(x
∗
j ,y

w
j ), (5.28)

where rj(xj,yj) can be thought of as unscaled local factor regret of choosing yj rather than

xj:

rj(xj,yj) =

Nj∑
k=1

(Ck
yj
− Ck

xj
) vkj . (5.29)

The equality between the second and third line in Eq. 5.28 holds because, for any x ∈ X,∑Nj
k=1C

k
xj

= 0 if j 6= 1, and
∑N1

k=1C
k
x1

= θ⊥1 for j = 1 (this was proved in Observation 3.3

before). Therefore, for any j ∈ 1..M ,

Nj∑
k=1

(Ck
ywj
− Ck

x∗j
)

θ⊥j
θ>j − θ⊥j

=
θ⊥j

θ>j − θ⊥j

 Nj∑
k=1

Ck
ywj
−

Nj∑
k=1

Ck
x∗j

)


=

θ⊥j
θ>j − θ⊥j

0

= 0.

By rewriting Eq. 5.28 as

MMR(U) =
M∑
j=1

rj(x
∗
j ,y

w
j ) θ>j +

M∑
j=1

−rj(x∗j ,ywj ) θ⊥j , (5.30)
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and comparing to

MMR(U) =
M∑
j=1

Nj∑
k=1

Dk
j θ

k
j ,

we can see that the local regrets rj(x∗j ,y
w
j ) play the same role for anchor parameters as dif-

ference coefficients Dk
j for generic GAI parameters. Furthermore, in Eq. 5.30, the anchor

coefficients rj(x∗j ,y
w
j ) are better suited to reflect the importance of anchor outcomes, and are

less likely to be zero (the local regret rj(x∗j ,y
w
j ) is zero only if x∗j = ywj ; in such a case, it

does make intuitive sense not to query about the anchor bounds for the factor Fj). The local

regrets rj(x∗j ,y
w
j ) can be easily computed given the parameters θjk for the adversary’s utility

function choice uw. By analogy to the general bound queries discussed above (i.e., substituting

rj(x
∗
j ,y

w
j ) for Dk

j ) we can see that the best query bound b∗ is always the midpoint of the gap,

and the best anchor to query is the one with the largest quantity |rj(x∗j ,ywj )|gap(θ>,⊥j ). The

UT scoring function for ABQs is:

SUT (qAB[θ
>/⊥
j , b∗]) = 0.5 |rj(x∗j ,ywj )|

bθ>/⊥j c+ dθ>/⊥j e
2

, for all j = 1..M. (5.31)

Due to the nature of ABQ queries, even if reducing uncertainty about anchor parameters does

not lead to an immediate reduction in the MMR level, it is still likely that constraining influen-

tial anchor parameters will provide benefits a few steps later in the elicitation process.

5.3.3.2 Scoring local bound queries (LBQs)

A bound query asks the user to consider a single outcome, and decide whether its value is

greater or less than some specified bound b. In a local bound query (LBQ, introduced in

Section 3.3.1.3) qLB[vkj , b], the outcome is a local factor outcome xkj whose LVF vj(x
k
j ) is

between 0 (if xkj is the worst factor outcome x⊥j ) and 1 (if xkj = x>j ).

The UT score of an LBQ is based on the same principles as the score for general bound and

anchor bound queries. To see the how much a given local outcome contributes to the MMR
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level, we rewrite Eq. 5.28 as follows:

MMR(U) =
M∑
j=1

Nj∑
k=1

(Ck
ywj
− Ck

x∗j
) θkj

=
M∑
j=1

(θ>j − θ⊥j )

Nj∑
k=1

Dk
j

θkj − θ⊥j
θ>j − θ⊥j

=
M∑
j=1

(θ>j − θ⊥j )

Nj∑
k=1

Dk
j v

k
j

=

Nj∑
k=1

(θ>j − θ⊥j )Dk
j v

k
j +

∑
j′ 6=j

Nj′∑
k=1

Dk
j′ θ

k
j′ . (5.32)

In this equation, each local value parameter for factor Fj contributes (θ>j − θ⊥j )Dk
j v

k
j to the

overall MMR level. Thus, among all local bound queries for factor Fj , the UT strategy picks the

one associated with the local configuration xkj with the largest quantity (θ>j −θ⊥j )|Dk
j | gap(vkj ).

Just as for general bound and anchor bound queries, the optimal bound to ask about is the

middle of the gap (Observation 5.2). This leads to the following scoring function for LBQ

queries:

SUT (qLB[vkj , b
∗]) = 0.5 (θ>j − θ⊥j )|Dk

j |
bvkj c+ dvkj e

2
, for all j = 1..M. (5.33)

Computing local bounds

One complicating difference between local and global bound queries is the difficulty of de-

termining the lower and upper bounds bvkj c and dvkj e for each LVF parameter vkj . For global

parameters θkj , their bounds can be found by solving simple linear programs, with constraints

U and G (see Section 5.3.3). For LVF parameters, computing the bounds is more problematic.

An LVF parameter vkj is related to GAI parameters as follows:

vkj =
θkj − θ⊥j
θ>j − θkj

.

Therefore, solving for max vkj (or min vkj ), subject to linear constraints U on global parameters

{θkj }, is a non-linear optimization problem. In practice, we use loose local bounds obtained
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from global parameter bounds and bounds computed from constraints imposed directly on

local value parameters by previous local bound and comparison queries. From the equation

above, since we know the bounds on θkj , θ
>
j , θ

⊥
j , we obtain:

bvkj c ≥
bθkj c − dθ⊥j e
dθ>j e − dθ⊥j e

,

dvkj e ≤
dθkj e − bθ⊥j c
bθ>j c − bθ⊥j c

.

In addition to the constraint set U of constraints on global parameters θkj , we maintain a separate

constraint set Uv of linear constraints on LVF parameters vkj obtained from local bound and

local comparison queries. With Uv, we can compute loose bounds on vkj by solving linear

programs min vkj and max vkj , subject to Uv. Since Uv only includes information from responses

to local queries, the bounds obtained are not exact. By combining the two types of bounds,

however, we get a reasonable approximation of the true local bounds, which is good enough in

practice for the query strategy. We should note that with more complex constraints on utility

parameters from different types of queries, it is possible that the query bound (i.e., the middle

of the estimated gap) might fall outside the true gap, resulting in a response that is inconsistent

with the previous preference information summarized by the constraint set U . In practice, once

a query is selected, we test for inconsistency of the updated constraint U for each possible

binary response, and reject the query if it leads to inconsistent responses; by updating the local

value constraint set Uv, we also ensure that the same query does not get selected in the future.

5.3.3.3 Scoring comparison queries (ACQs and LCQs)

A basic outcome comparison query qC [θk1j1 , θ
k2
j2

] asks the user to compare two basic outcomes

bj1,k1 and bj2,k2 . The response imposes an inequality constraint between the two correspond-

ing GAI parameters θk1j1 and θk2j2 . As described in Section 3.3, both local comparison queries

(LCQs) and anchor comparison queries (ACQs) are basic outcome queries.
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In an LCQ, both outcomes are local outcomes that belong to the same factor; in addition, the

user is asked to assume that the attributes in the factor’s conditioning set are fixed at reference

levels. A sample query would be: “Assume that the attributes in Kj are fixed at reference

levels. Would you prefer the local outcome xk1j to the local outcome xk2j , ceteris paribus?” If

the answer is “yes”, then vj(xk1j ) ≥ vj(x
k2
j ), and, therefore, θk1j ≥ θk2j ; if the answer is “no”,

then θk1j ≤ θk2j .

In an ACQ, both outcomes to be compared are either top or bottom anchors for some

(different) factors. Just like LCQs, ACQs are a subset of basic outcome comparison queries,

which result in inequality constraints on two GAI parameters.

bj1,> � bj2,> ⇐⇒ θ>j1 ≥ θ>j2 . (5.34)

To simplify the notation and unify the presentation for both LCQs and ACQs, let’s assume

that every local configuration in every factor can be identified a single global index. That is,

we assume a one-to-one mapping between any pair 〈j, k〉 (where j is the factor index, and k is

the local configuration index) and a global index p.1 In this way, each GAI utility parameter

can be addressed by a single index:

θkj = θp.

A GAI utility function can then be written as

u(x) =
∑
p

C(x)p θp,

where C(x)p = Ck
xj

is the structure coefficient for the parameter θp. The MMR equation

1For example, we could set p =
∑j−1

j′=1Nj′ + k to compute the global index of the parameter θkj (Nj is the
number of local configurations in factor Fj).
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becomes:

MMR(U) =
M∑
j=1

Nj∑
k=1

(Ck
ywj
− Ck

x∗j
) θkj

=
∑
p

(C(x∗)p − C(yw)p) θp

=
∑
p

Dp θp,

where Dp = C(x∗)p − C(yw)p.

Let P be the set of indices of parameters that are being considered for a comparison query.

For LCQs, P indexes the set of all basic outcomes for a particular factor Fj . For ACQs, P

specifies the set of all anchor parameters. The final list of comparison queries to be scored is

obtained by considering all pairs of parameters {(θp1 , θp2)|p1, p2 ∈ P} involved in the current

solution such that:

(a) Dp1 6= 0 and Dp2 6= 0 for all p1, p2 ∈ P ;

(b) dθp1e ≥ bθp2c and dθp2e ≥ bθp1c; and,

(c) the relationship between θp1 and θp2 is not known due to earlier queries.

The first condition limits the pairs of parameters to be considered to those that actually con-

tribute to the current MMR level due to non-zero coefficients Dp. The second condition checks

the bounds for implied relationships, because if one parameter’s lower bound is greater than the

other’s upper bound, a comparison query would be meaningless. The third (which subsumes

the second) makes sure that the relationship between the two parameters is not already known

beforehand due to transitive closure of previous comparison constraints (or, more generally,

due to prior constraints U or G).

For that purpose, we maintain a preorder data structure that keeps track of order relation-

ships among all utility parameters, marking a preference relationship between each pair of

parameters as �, �, or ? (unknown). If a new relationship is added, the data structure triggers

an iteration through all related parameter pairs, updating unknown relationships according to
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Figure 5.11: Four different ways to bisect a bounding rectangle. The shaded area approximates the
feasible parameter space after a response to a comparison query. In all cases, if the response
to a comparison query eliminates the part of the rectangle which contained the current
solution point (θp1 , θp2) (marked with a circle), the new solution point (marked with a
square) is one of the two intersections of the diagonal and the bounding rectangle. vi

corresponds to θp1 , and vk corresponds to θp2 .

transitive preference rules. The preorder data structure provides an efficient way to filter out

the pairs of parameters with known preference relationships. However, it is possible that, due

to complex linear constraints in U resulting from bound and general comparison queries, the

preorder data structure deems a preference relationship between a pair of parameters as un-

known, when in fact, due to linear constraints U , the relationship is fixed. For computational

efficiency, we use the preorder data structure to score different pairs of parameters, but, once

the optimal pair selected for the query, we verify that the query would not result in an incon-

sistent response by solving two linear programs, subject to constraints U and G. For the two

parameters θp1 and θp2 , if max θp1 − θp2 ≤ 0, then θp2 � θp1 under all feasible utilities in U,

so the pair of parameters should not be queried (but their relationship should be added to the

preorder data structure). Similarly, if max θp2 − θp1 ≤ 0, then θp1 � θp2 . In all other cases, the

preference relationship between θp1 and θp2 is unknown (given U), so the comparison query

can be asked.

To score comparison queries, we approximate the feasible utility parameter space U with a

bounding hyperrectangle. For each pair of parameters (θp1 , θp2), we compute a heuristic score

as follows. First, we project the bounding hyperrectangle on the plane of the two parameters;

the comparison constraint divides the 2-D projection along the 45-degree line. Fig. 5.11 shows

four possible cases and demonstrates that, after a response to a comparison query, the values of

the parameters (θp1 , θp2) (as well as the current level of regret) either remain the same, or they
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are pushed to lie at one of the two intersections of the diagonal with the bounding rectangle. In

the latter case, the reduction in regret can be approximated by

Dp1θp1 +Dp2θp2 −max(Dp1t1 +Dp2t1, Dp1t2 +Dp2t2), (5.35)

where (t1, t1) and (t2, t2) are the coordinates of the two intersections. The probability of the

regret-changing response is estimated by comparing the areas above and below the 45-degree

line (see Fig. 5.11).

The heuristic score SUT weighs the approximated reduction in regret (computed by the

equation above) by the probability of the regret-changing response.

5.3.3.4 Scoring global comparison queries (GCQs and GCPQs)

Global comparison queries (GCQs) are the most general comparison queries. Rather than

limiting the two outcomes in the query to basic outcomes (or a subset of basic outcomes, such

as anchor outcomes, or basic outcomes in the same factor), in a GCQ query, the two outcomes

to be compared are arbitrary global outcomes. Because there is an exponential number of GCQ

queries, and because an arbitrary GCQ query can be difficult to reason about, the only GCQ

queries that we consider are current solution comparison queries qC [x∗,yw], in which the two

outcomes are the MMR-optimal choice x∗ and the adversary’s choice yw.

In certain domains, such as renting an apartment or choosing a travel package, outcomes

have an associated price, which we treat as a special attribute, measured in monetary units. We

make the standard assumption of quasilinear utility in which, overloading u, the utility u(x, p)

of an outcome x obtained at price p is u(x, p) = αu(x)−p. Here u(x) is the price-independent

utility of x and α is a valuation factor that adjusts u for currency (to keep things simple, we

assume that α = 1). A GCQ that asks a user to compare two current solution outcomes x and y

while taking into account their price attributes px and py is called the global comparison query

with price (GCPQ). If the price attribute is not considered when comparing the two outcomes

x and y, the query is simply a GCQ.
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As with all the queries, a response to a GCQ or a GCPQ imposes a linear constraint on GAI

parameters, potentially constraining many parameters at once:

(x, px) � (y, py) ⇐⇒ u(x, px) ≥ u(y, py)

⇐⇒
M∑
j=1

Nj∑
k=1

Ck
xj
θkj − px ≥

M∑
j=1

Nj∑
k=1

Ck
yj
θkj − py

⇐⇒
M∑
j=1

Nj∑
k=1

(Ck
xj
− Ck

yj
) θkj ≥ px − py.

Since Ck
xj

, Ck
yj

, px and py are known, the resulting inequality is a linear constraint on GAI

parameters θkj . For GCQ queries, where the price attribute is not considered, we can assume

that px = py.

With price, the current solution outcomes are (x∗, px∗) and (yw, pyw). If the user prefers

(x∗, px∗), then the adversary’s choice has to change, since u(x∗, px∗) ≥ u(yw, pyw) for all

u ∈ Ua, making the pairwise regretR((x∗, px∗), (y
w, pyw),Ua) = R(x∗,yw,Ua)+(px∗−pyw)

for the current solution zero. If the user actually prefers the adversary’s choice (yw, pyw), then

the current solution choices (x∗, px∗) and (yw, pyw) are not guaranteed to change; however, in

practice, they often do, because of an additional constraint on U .

For GCPQs, where the current solution outcomes include price, there is no obvious way

to compute heuristic scores that would be well-calibrated against scores for other query types

(since GCPQs are very “powerful” queries, almost guaranteed to change the current solution).

Therefore, we usually employ GCPQs separately, without combining them with other types of

queries. GCQs, however, can be incorporated in our standard scoring-based elicitation frame-

work. The user is asked to compare the two current solution outcomes while ignoring the

special price attribute. For a heuristic score SUT for a GCQ qC [x∗,yw], we use the SCS score,
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which can be computed by solving two linear programs (Eq. 5.22):

SUT (qC [x∗,yw]) = SCS(qC [x∗,yw])

= MMR(U)− Ea[R(x∗,yw,Ua)]

= MMR(U)−

0.5 max
θ∈ΘUyes

M∑
j=1

Nj∑
k=1

(Ck
ywj
− Ck

x∗j
) θkj + 0.5 max

θ∈ΘUno

M∑
j=1

Nj∑
k=1

(Ck
ywj
− Ck

x∗j
) θkj

 .

(5.36)

Here ΘUyes and ΘUno are GAI parameter spaces after “yes” and “no” responses, and we as-

sume that both responses are equally likely (since it is computationally hard to compute exact

likelihoods due to the complex shape of the polytope ΘU).

5.4 Experimental results

In this section, we compare the performance of various elicitation strategies on the apart-

ment rental database problem (Appendix C.2) and the car rental configuration problem (Ap-

pendix C.1). The apartment rental problem comprises a database of 200 apartments, described

by ten attributes (including price), each having between two and four domain values. The GAI

model has eight factors. The car rental problem is modeled with 26 attributes that specify var-

ious attributes of a car relevant to typical rental decisions. The domain sizes of the attributes

range from two to nine values, resulting in 6.1× 1010 possible configurations. The GAI model

consists of 13 local factors, each defined on at most five variables; the model has 378 utility pa-

rameters. There are ten hard constraints defining feasible configurations. Appendix C contains

full descriptions of the domains.

The algorithms were implemented in Python; ILOG CPLEX 9.1 was to used to solve LP

and MIP optimizations. For both problems, computing the regret-minimizing solution, which

has to updated after each query, takes less than one second; determining the next query for

any elicitation strategy also takes less than one second. Thus our approach admits real-time

interaction.
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Combining different queries

We use all six types of basic queries in our experiments: LB (local bound), LC (local compar-

ison), AB (anchor bound), AC (anchor comparison), GC (current solution global comparison),

and GCP (GC with price). During elicitation, each query has a score SUT computed using

techniques described in Section 5.3.3. If all types of queries are available, we can simply

choose the next query to ask based on the heuristic score SUT . However, in general we want

to consider not only the impact of a query in reducing regret, but also its cost to a user. Global

queries might be harder to answer than local queries; similarly, most users will find comparing

two outcomes easier than dealing with bound queries. Therefore, we investigate the perfor-

mance of several “qualitative” strategies that combine different query types without explicitly

differentiating for cost.

• LC LC strategy uses only local comparison queries. Elicitation terminates when no local

comparison queries can be used to further reduce minimax regret.

• LC(LB) If instead of terminating when no LCQ has a positive score, we select the best

local bound query, we get the LC(LB) strategy.

• LB LB strategy uses only local bound queries.

• GCP GCP strategy employs only current solution comparison queries (which include

the price attribute). Guided by the MMR optimal solution, this strategy uses pairwise

comparisons of outcomes to find the best one. GCP strategy is only applicable in the

apartment rental domain (since configurations in the car rental domain do not include

price). It is the only strategy that does not use the heuristic scoring function SUT .

The remaining strategies do not favor any query type, but simply select a query with the highest

score from the set of allowed query types:

• LB+LC combines local comparison and bound queries,
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LB LC AB AC GC GCP

LC 0 100 0 0 0 0

LC(LB) 71 29 0 0 0 0

LB 100 0 0 0 0 0

LB+LC 73 27 0 0 0 0

AB+AC 0 0 86 14 0 0

LB+AB 49 0 51 0 0 0

LC+AC 0 66 0 34 0 0

LB+LC+AB+AC+GC 24 9 27 7 34 0

GCP 0 0 0 0 0 100

Table 5.3: The table lists empirical query type percentage proportions for different query strategies,
averaged over 100 random instantiations of user utilities in the apartment rental domain.
Each elicitation session consists of up to 100 interactions.

• AB+AC uses only global queries,

• LB+AB uses only bound queries,

• LC+AC uses only comparison queries, and

• LB+LC+AB+AC+GC or all query strategy uses all available queries (except GCP).

To get a sense of how frequently different queries are asked using these different strategies,

Table 5.3 lists empirical query type proportions for different query strategies, averaged over

100 random instantiations of user utilities in the apartment-rental domain.

Results

Fig. 5.12(a) shows the performance of the nine query strategies described above on the apart-

ment rental database problem; Fig. 5.12(b) shows the performance of five strategies on the car

rental configuration problem. Elicitation sessions terminate after 100 queries. The results are

averaged over 100 random instantiations of user utilities for the apartment rental problem, and
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LC

LC+AC

AB+AC

LB, LC(LB),LB+LC

LB+LC+AB+AC+GC

LB+AB

GCP

(a) Apartment rental problem

LB+ABLB,LB+LC

(b) Car rental problem

Figure 5.12: The performance of different query strategies on the (a) apartment rental database problem;
(b) the car rental configuration problem. Each curve shows how the minimax regret is
reduced as the number of query-response interactions increases. The figure (b) for the car
rental configuration domain is taken from (Braziunas and Boutilier, 2007); the experiments
for the configuration domains did not include GCP and “all queries” strategies (although,
from (a), we can expect that “all queries” strategy performs very similar to the LB+AB
strategy).
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GCP LB+LC+AB+AC+GC

LB+AB

LB, LC(LB),LB+LC

LC

LC+AC

AB+AC

(a) Runtime distribution - 50% of initial regret

GCP

LB+LC+AB+AC+GC

LB+AB

All others

(b) Runtime distribution - 10% of initial regret

Figure 5.13: Runtime distributions of different query strategies in the apartment rental domain. Each
curve represents the probability that the strategy achieves the reduction to (a) 50% of initial
regret, and (b) 10% of initial regret, for a given number of elicitation queries (interactions).

20 instantiations for the car rental problem. In the following discussion, we concentrate on the

apartment rental domain (Fig. 5.12(a)), but strategy performance follows similar trends in the

car rental domain as well.

Fig. 5.12(a) shows how the average minimax regret is reduced (starting at 100% of initial
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regret) with additional utility information obtained via preference queries. The nine strategies

can be roughly partitioned into two groups based on their performance. The first group contains

strategies that are not powerful enough to achieve significant reduction in minimax regret after

the first 20 or 30 steps. It includes LC, LC+AC, AB+AC, LB, LC(LB), and LB+LC strategies;

the performance of LB, LC(LB), and LB+LC strategies is virtually identical. While natural and

easy to answer, comparison (both local and global) queries do not provide enough quantitative

information on their own to effectively reduce uncertainty over user utilities. Local bound

queries are more effective, but are of limited impact if used without the cross-factor calibration

provided by global queries.

The second group contains three best-performing strategies: LB+AB, LB+LC+AB+AC+GC,

and GCP. All the strategies in this group reduce the minimax regret to close-to-zero after ap-

proximately 50 queries. The competitive performance of the LB+AB strategy demonstrates

the necessity of both LB and AB queries in elicitation strategies. The LB+LC+AB+AC+GC

(also known as the all query) strategy successfully combines five different query types based

on the SUT scoring function without sacrificing performance. On average, it uses 24% LBQs,

9% LCQs, 27% ABQs, 7% ACQs, and 34% GCQs (see Table 5.3 for query proportions for

other query strategies). Finally, the GCP strategy that uses only pairwise comparison queries

involving the two current solution outcomes (with price) turns out to be both the most effective

and the simplest of all.

Figure 5.13 provides a different evaluation of query strategy performance by showing the

runtime distributions of different query strategies in the apartment rental domain. Each curve

represents the probability that the strategy achieves the reduction to (a) 50% of initial regret,

and (b) 10% of initial regret, for a given number of elicitation queries. Figure 5.13(b) clearly

shows the separation of the nine query strategies into two groups defined above, since the

strategies in the first, less effective, group do not have any chance of reducing the minimax

regret to 10% of its initial value.

With the exception of the AB+AC strategy, all strategies (including those that use only local
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queries) exhibit a sharp initial reduction in minimax regret (by around 20% after the first 10

queries or so). This means that in many cases we can initially use local comparison queries

(which are generally less costly in terms of user effort, time and accuracy than bound queries),

and then switch to using bound queries for further reduction of regret. In domains with a

relatively small number of attributes (where the user can comfortably compare two arbitrary

outcomes) GCPQs perform very well. With more attributes, global comparison queries become

costlier, making local queries (especially LBQs) more attractive.

In the next chapter, we describe a user study that evaluates the performance of GCP and

“all queries” strategy with real users.

5.5 Conclusion

Minimax regret was first recognized by Boutilier et al. (2001); Salo and Hämäläinen (2001) as

a robust decision criterion under utility function uncertainty. It is used by Wang and Boutilier

(2003) with flat (unstructured) utilities, and by Boutilier et al. (2004c) with additive utilities.

Most relevant to the material in this chapter is the work by Boutilier et al. (2001, 2003b, 2005,

2006) on applying minimax regret to decision making with and elicitation of GAI utility mod-

els. In this chapter, we extend this work by addressing several limitations of the previous

approaches. First, we show how to incorporate semantically sound local queries into GAI

preference elicitation framework, and how to compute minimax regret in configuration prob-

lems using the parametric representation of GAI models. Second, we also consider database

domains, and apply minimax search pruning techniques to speed-up regret computation in

databases domains. For elicitation, we extend the current solution heuristic idea to derive

scores for all types of queries described in Sec 3.3; specifically, the incorporation of compar-

ison queries into the framework is of great practical significance, since such queries are very

natural for users to understand and respond to (see Chapter 6).
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There are several directions for future work on minimax regret-driven elicitation of fac-

tored utility models. Minimax regret is a robust decision criterion, providing decision quality

guarantees for any possible realization of user utility function. In some domains, it is desirable

to use the minimax regret criterion for final recommendation, even though prior probabilistic

information about user utilities is available. We could take advantage of probabilistic informa-

tion about user utilities in optimizing elicitation strategy, but still use the robust MMR decision

criterion for the final decision (Wang and Boutilier, 2003). For example, for bound queries,

we could optimize the query bound using the Bayesian value-of-information criterion, rather

than simply setting the query bound to the mid-point of the bound interval. A related issue

is consideration of optimal (non-myopic) query strategies. As discussed in the previous chap-

ter, computing a sequentially optimal elicitation policy is an intractable problem, equivalent

to solving a large continuous-space POMDP. However, it might be possible to devise scoring

heuristics that provide a better approximation of a query’s sequential (even of limited looka-

head horizon) value.

In this chapter, we considered several types of queries that are well grounded in terms of

decision-theoretic semantics and simple enough to be used in actual interactive applications

with human subjects. However, there is a variety of additional preference query types and

modes of interaction that can be effective in eliciting human preferences. Examples include

graphical sliders to provide the bounds on utility parameters, or a set of items to choose the

preferred item from (Viappiani and Boutilier, 2009, 2010). For each new query type, we have to

provide a user interface, incorporate it into our modeling framework, and devise good heuristic

scoring functions for use in mixed query strategies.

Successful implementation of decision support systems requires consideration of both de-

scriptive and prescriptive approaches to the preference elicitation problem. In addition to the

sound decision-theoretic framework, we also need to address human-centred issues, such as

framing and ordering effects, sensitivity analysis and robustness, and the reliability and accept-

ability of different modes of interaction (Pu et al., 2003). Such empirical validation is only
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obtainable with actual user studies, which can make our interaction models more natural and

understandable for end users, as well as more effective in providing good recommendations.

The next chapter describes a user study that is the first step in this direction.
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6.1 Introduction

In this chapter, we describe the first full-fledged user study evaluating the benefits of minimax

regret-driven elicitation and recommendation (Braziunas and Boutilier, 2010).

We first introduce the UTPREF Recommendation System, a fully implemented system that

helps students navigate and find rental accommodation (or apartments) from a university hous-

ing database. UTPREF assumes a multiattribute, generalized additive utility model of a stu-

dent’s preferences over housing features, and asks queries of several distinct forms about these

preferences. Responses impose constraints on the parameters of the student’s utility model,

and the system uses the minimax regret decision criterion for several purposes: to recommend

a rental unit at any point in the interaction; to assess the quality of the recommended unit,

specifically bounding how far it is from the (unknown, user-specific) optimal apartment in the

database; and to select queries that have the greatest potential to improve the recommendation.

UTPREF exploits minimax regret to “prove” that the optimal apartment has been found with

very limited information about the user’s underlying utility function.

We then present the results of a study in which 40 participants used the UTPREF system un-

der a variety of conditions to find their most preferred apartment from the database. We assess

how far the UTPREF-recommended apartment is from the true optimum (using a method dis-

cussed below), measure the effectiveness of regret-based elicitation in finding (near-) optimal

products, and evaluate user understanding of the minimax regret criterion and its recommenda-

tions. Since UTPREF uses GAI utility models, which are more flexible, but also more complex

than commonly used additive models, we are also interested in their value: do they provide

for higher quality decisions in practice than an additive approximation. We also assess whether

decision-theoretically valid local queries for GAI models allow for more accurate estimation of

preferences than simpler queries that ignore the conditioning context (i.e., the assumption that,
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in local queries, attributes in the factor conditioning set are to be assumed fixed at reference

values). Finally, we provide some assessment of the relative difficulty of specific query types

for users.

6.2 UTPREF recommendation system

The UTPREF recommendation system is a software tool that explicitly models user prefer-

ences with a GAI utility function, incrementally acquires preference information through a

sequence of queries and responses, and recommends a minimax regret-optimal option to the

user. It is designed to work with multiattribute database domains, although a suitably modi-

fied recommendation system could support configuration problems as well. In particular, in its

current implementation, UTPREF provides recommendations for rental accommodation (apart-

ments) in Toronto using a university housing database. Each accomodation unit is described

by nine attributes in addition to its price (monthly rent): area, building type, number of rooms,

furnished or not, availability of laundry, parking, dishwasher, storage room, and central air

conditioning. We make the standard assumption of quasilinear utility in which, overloading u,

the utility u(x, p) of an outcome x obtained at price p is u(x, p) = u(x)− p; here, u(x) is the

price-independent utility of x. Price (rent) is, therefore, a special attribute. In the database of

100 apartments, sampled from the University of Toronto housing database, rents range from

$500 to $1800; area is divided into four geographic regions; building type (house, apartment,

basement) and number of rooms has three values; the remaining attributes are binary. Utility

structure (i.e., GAI factors) is configurable; in the user study described in this chapter, we used

a common fixed structure with two intersecting factors with two attributes in each: area, build-

ing type and building type, number of bedrooms; the remaining factors had single attributes.
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Figure 6.1: Screenshot from a UTPREF session

6.2.1 Implementation

UTPREF consists of a back-end recommendation engine, and a graphical user interface. The

recommendation engine is written in Python and uses ILOG CPLEX for the solution of linear

programs needed to compute pairwise regret. The graphical user interface is written in Adobe

Flex and runs inside the Adobe Flash Player either as a stand-alone cross-platform application

or a web browser plugin (see Fig. 6.1 for a sample screenshot of the UTPREF session).

A recommendation session proceeds in two stages. In the preliminary stage A, the system

assesses basic user preference information. First, the user is asked to configure a reference

outcome using drop-down lists of values for each attribute. For example, in the apartment

domain, it could be the apartment in which the user currently resides or aspires to reside. In the

UTPREF user interface, the exact instruction reads “Please configure a reference apartment.

This should be an apartment that you are most familiar with. A good choice is an apartment

you currently live in, or an apartment you would like to move into.” The reference outcome

attribute values feature in many types of elicitation queries; such queries are, in fact, tailored

to the user based on the selected reference outcome. In local queries, the attributes in the factor

conditioning set are fixed to reference values; in global anchor queries, all the attribute values
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that are outside the query factor are fixed to reference values. Therefore, choosing a familiar

reference outcome makes it easier for the user to answer most types of elicitation queries.

After configuration of the reference outcome, for each GAI factor, the user is shown a list

of the factor’s local outcomes, together with the conditioning set attributes fixed to reference

values, and is asked to sort that list in terms of decreasing preference via a drag-and-drop

interface (see Fig. 6.2(a)). This sorted list provides both the best and the worst factor outcomes

(which are used later in local bound queries), as well as a complete ordering of the (local) factor

outcomes. Obtaining the full ordering of factor outcomes is easy when the number of factor

configurations is relatively small (in the housing domain used in the user study, the largest

number of outcomes to sort was nine), since the users are generally familiar with graphical

sorting interfaces. The task of sorting N factor outcomes provides O(N2) implicit pairwise

comparisons and therefore saves us from having to ask O(N2) local comparison queries.

The preliminary preference information acquired in stage A is rarely enough for the user

to accept the recommended (MMR-optimal) decision, because its maximum regret is generally

still too high. In stage B, the system asks the user a series of queries, until minimax regret drops

to an acceptable level. UTPREF employs five different types of queries, described below, and

can be configured to implement a variety of elicitation strategies that differ in which query

types are used, and what criteria are used to choose a query. At each step, the user can opt to

see the MMR-optimal recommendation and its max regret level, and then decide whether to

continue with further elicitation, or accept the system’s recommendation.

6.2.2 Query types

UTPREF employs several types of GAI queries that can be classified as either comparison or

bound queries; queries are further distinguished by the type of outcomes involved (local or

global) (see Section 3.3). All query types have a precise decision-theoretic semantics dictated

by the theory of generalized additive independence, and responses to any query impose linear

constraints on the GAI model parameters. An equally important characteristic of these query
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(a) Local sorting (b) LCQ (c) LBQ

(d) ABQ (e) GCPQ

Figure 6.2: Five different query types
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types is their user-friendliness and usefulness in practical applications, as corroborated by the

user study results reported in Section 6.4.

Local queries

Local queries involve only a small subset of all attributes, namely attributes in some GAI

factor and the attributes in the factor’s conditioning set; the values of remaining attributes do

not matter. In UTPREF, we use three types of local queries: comparison, sorting, and bound

queries.

A comparison query asks the user to compare two outcomes and select the more preferred

one. In a local comparison query (Fig. 6.2(b)), both outcomes are local outcomes and belong

to the same factor. In addition, the user is asked to assume that the attributes in the factor’s con-

ditioning set are fixed at reference levels. A response to an LCQ induces in a simple inequality

constraint between two GAI utility function parameters.

Sorting a list of factor outcomes determines all pairwise relationships between factor out-

comes (i.e., it is similar to asking a large set of pairwise LCQs). Fig. 6.2(a) shows an example

of the sorting interface for a factor with ApartmentType and NumberOfBedrooms attributes;

notice that the Area attribute, which is the local conditioning set, is fixed at the same reference

value for all outcomes (users are alerted to this fact elsewhere on the screen).

A bound query asks the user to consider a single outcome, and decide whether its value

is greater or less than some specified bound b. In UTPREF, we approximate the probabilistic

semantics of LBQs by asking the user to simply consider a local outcome xj (in factor Fj) on a

scale from 0 (which is the local value of the worst factor outcome x⊥j ) to 100 (which is the local

value of the best factor outcome x>j ), and specify if its value v is greater or less than the bound b.

If v ≥ b, then, according to the LBQ probabilistic semantics, xj � 〈b/100,x>j ; 1− b/100,x⊥j 〉;

otherwise, xj ≺ 〈b/100,x>j ; 1 − b/100,x⊥j 〉. As in other local queries, the attributes in the

conditioning set are fixed to reference values. A response to an LBQ imposes linear bound

constraints that tie together three different GAI utility parameters.
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In the screenshot shown in Fig. 6.2(c), the user has indicated that the value of the Toronto

East, House outcome is somewhere between 0 and 50 by dragging the outcome in question

to the lower bin. The user can also adjust the query “boundary” (in this case 50) by moving

the slider to provide tighter or looser constraints if they feel comfortable doing so.1 Since by

adjusting the query boundary the user is more likely to narrow the bounds of the selected bin,

such user-driven bound adjustment provides stronger restrictions on the feasible utility space.

On the other hand, by allowing the user to adjust the bounds, we open up the possibility of

inconsistent responses (all other queries are guaranteed not to result in contradictory constraints

U on user utilities). While there are many ways of dealing with inconsistent responses, a

straightforward practical approach is to ignore user-adjusted bounds for inconsistent responses.

Global queries

Global queries ask a user to consider preferences over full outcomes. UTPREF uses three types

of global queries: anchor bound, anchor comparison and global comparison queries.

Anchor bound queries ABQs involve factor anchors, i.e., the best and worst factor out-

comes with all attributes outside the factor (not just the conditioning set) fixed at their refer-

ence levels. The user only has to specify whether the anchor utility is greater than the specified

bound. In UTPREF, we use a monetary scale to calibrate global outcome utilities. In the

screenshot in Fig. 6.2(d), the user is simply asked “Would you be willing to pay (at least)

$1150 for the specified apartment?”

We also use three variations of global comparison queries. GCQs and GCQs with price

(GCPQs) ask a user to consider two arbitrary global outcomes, ignoring price in the former

case, and accounting for price in the latter. An example GCPQ is shown in Fig. 6.2(e). The

user is asked to select the better option. A particular form of GCQ is the anchor comparison

query (ACQ), in which both outcomes to be compared are either top or bottom anchors for some

1While this boundary adjustment functionality is supported by UTPREF, it was not enabled during the user
study (described below).
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factor. ACQs are likely easier to understand because, unlike general GCQs, most attributes are

fixed at reference levels, which are stable and salient. They also lead to linear constraints that

involve only two utility parameters whereas responses to general GCQs or GCPQs tie together

multiple utility parameters.

6.2.3 Elicitation strategies

UTPREF system can support a variety of query strategies by restricting the types of queries

allowed, and employing different scoring methods. In the user study described below, we test

only two strategies due to the relatively small number of participants. The two strategies are

both the best-performing on the apartment rental domain with simulated users (see Fig. 5.12(a)

and Fig. 5.13 in Section 5.4) and the most diverse in terms of query types and query scoring

methods.

The first strategy is the all query (also known as LB+LC+AB+AC+GC) strategy, intro-

duced in Section 5.4. It mixes all types of queries except GCPQ (LBQ, LCQ, ABQ, ACQ and

GCQ), and at each step selects a query based on the heuristic scoring function SUT described in

Section 5.3.3.1 GCPQs are not included in the all query strategy for because they do not have

SUT scores, which makes it difficult to meaningfully compare them with other query types in

terms of the regret-reduction potential.

On the other end of the spectrum lies the GCPQ only strategy. It relies exclusively on

GCPQs that ask only about the current solution outcomes (the first one being the minimax

optimal outcome, and the second being the adversarial witness; both outcomes include the

special price attribute). For this strategy, no query scoring function is needed. If the first

choice is preferred, then we can be sure that utility constraints will lead to a different minimax

regret solution; otherwise, if the adversary’s choice is preferred, additional constraints almost

1In the actual user study described in this chapter, information about all local pairwise comparisons was
obtained beforehand by asking the users to sort each factor’s local outcomes. Therefore, the “all query” strategy
did not use local comparison queries. With larger factors, sorting all local outcomes might be too cumbersome, in
which case the strategy will potentially employ LCQs as well.
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always lead to a different current solution (if the current solution does not change, the strategy

defaults to the all query strategy; however, we have not encountered this in practice).

6.3 User study design

We conducted a user study with the UTPREF system with three main objectives: 1) to assess

overall user comprehension and acceptance of minimax regret-based elicitation; 2) to measure

the costs, in terms of time and perceived difficulty, of different query types; and 3) to evaluate

the effectiveness of the GAI utility representation as a model of user preferences, investigate the

importance of context in local queries in GAI models, and compare different query strategies.

6.3.1 Setup

We recruited 40 participants from the University of Toronto who had either searched for rental

housing in Toronto in the previous year, or were considering a new rental in the near future.

The primary task of participants involved searching for apartments, using the UTPREF system,

from a database of 100 Toronto apartments (sampled from a real Toronto housing database).

The number of apartments was chosen to be large enough to justify the use of an intelligent

search aid, but small enough for a user to evaluate each option in the second phase of the

study, as discussed below. Other related studies have used databases of similar size (Viappiani,

Faltings, and Pu, 2006; Portabella Clotet and Rajman, 2006).

Each user session was divided in two parts. In Part 1, users answered preference queries

posed by UTPREF which then recommended an apartment based on user responses. In Part 2,

users explicitly rated all apartments in the database and ranked the top few options, allowing

us to assess the quality of the recommended apartment relative to the user’s explicitly stated

preferences.

After a brief introduction and a five-minute demonstration, each user session was controlled

by the UTPREF system itself, with minimal researcher oversight. Participants were guided by
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UTPREF via prompts, task descriptions, and queries. In the first stage of elicitation (Part 1A),

participants were asked to configure a reference outcome, and provide an ordering of the local

outcomes in each factor using the simple sorting interface (thus also specifying best and worst

factor outcomes). In Part 1B, participants responded to a series of local and global queries about

their preferences. After ten queries, the system displayed the minimax-optimal apartment and

its max regret. The user could then stop the process, or continue answering further queries until

minimax regret was reduced to a satisfactory level.

After a short break, participants completed Part 2 of the session, which involved answering

a questionnaire about the experience, rating all the apartments in the database, and sorting a

small list of apartments in terms of preference. Part 2 was designed to provide an independent

assessment of user preferences over the items in the database, in order to evaluate UTPREF ’s

recommendation quality in Part 1. The most demanding task in Part 2 involved rating all 100

apartments in the database (10 screens with 10 apartments in each) on a 0-2 scale, with score

semantics: 0, I do not like this apartment; 1, Not sure; and 2, I would rent this apartment. The

rationale behind this task was to quickly identify a set of higly preferred apartments (with the

score of 2), without requiring the users to sort the entire list of 100 items. Instead of sorting

the entire list, after the rating process, the users were asked to sort (in order of preference) a

much smaller set of top-rated apartments, which we call the final list. The final list was formed

by taking the union of, and randomly shuffling, up to ten highest user-rated apartments from

the first task of Part 2, and five apartments with the least max regret as determined in Part 1

(because some apartments were in both sets, the final list could have fewer than 15 elements;

for the participants in the UTPREF study, the list sizes ranged from 7 to 12 apartments). The

final list always included the recommended outcome, but it was not distinguished in any way.1

In the last task of Part 2, users specified an approximate value difference (in dollars/monthly

rent) between the best and worst options in the final list: users were shown their best and worst

1Because of the break induced by the questionnaire, participants were less likely to precisely recall the recom-
mended apartment.
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options in their sorted list, and asked how much the rent of the best option would have to

increase to make the user roughly indifferent between the two options.

6.3.2 Study subgroups

One main feature of UTPREF is the use of more flexible, but more complex, GAI utility func-

tions to represent user preferences. We believe UTPREF is the first preference elicitation sys-

tem to employ GAI models (rather than additive or unstructured models). To evaluate the

benefits and limitations of using this more complex, but semantically sound, model, we tested

UTPREF under three main modeling assumptions.

The first condition, GAI, uses a full GAI utility model, reflecting preferential dependence

among attributes using GAI factors. Elicitation techniques and local queries are those man-

dated by the theory of GAI modeling (see Chapters 3 and 5). Utility structure (i.e., GAI fac-

tors) was fixed for all participants in the study. The utility function had two intersecting factors

with two attributes in each: area, building type and building type, number of bedrooms; the

remaining factors had single attributes.1

The second condition, GAI with no local context (GAI-nc), was designed to test the sen-

sitivity of GAI elicitation to the use of sound conditioning sets. GAI-nc is identical to GAI,

using the same GAI model, except that UTPREF does not display the conditioning context

when asking local factor queries (e.g., in the local sorting task or when asking local bound

queries). Our aim is to test whether good recommendations can be generated without the use

of conditioning context (which, theoretically, is required).

The third condition, ADD uses a simple additive utility model to represent user preferences.

No modification of UTPREF is needed, since additive models are a simple, special case of GAI

models which have single-attribute factors and empty conditioning sets.

We used a between-group experimental design, with three randomly selected groups of

1Utility structure obviously depends on the specific user; however, eliciting factor structure was beyond the
scope of the current study. The factors were chosen to reflect a reasonable consensus of possible attribute depen-
dencies based on the domain and an informal survey of potential users.
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Figure 6.3: Rank and qrank distribution across study participants

subjects from the 40 participants were assigned to the conditions GAI, GAI-nc and ADD. In

addition, half of the users were asked only GCPQ current solution queries, while the other half

interacted with the elicitation strategy that employed all other types of queries (ABQ, ACQ,

GCQ and LBQ). This gave six subgroups:

GAI GAI no context (GAI-nc) Additive (ADD)

All queries A B C

GCPQ only D E F

All subgroups had 6 participants except subgroups B (7 participants) and C (9 participants).

6.4 User study results

We present the results of the user study in three parts: first we describe overall system perfor-

mance with respect to recommendation effectiveness, ease of use and user satisfaction; second

we discuss query costs (both time and perceived difficulty); and finally we consider perfor-

mance differences under the different test conditions.
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Figure 6.4: Completion times for tasks and number of queries. Part 1A, choosing a reference outcome,
and sorting all local outcomes for each factor, is the same for all participants; the duration
of Part 1B (answering elicitation queries) depends on the number of queries needed to re-
duce regret to zero. Part 2, rating all 100 apartments in the database, is the same for all
participants.
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6.4.1 Overall evaluation

User impressions Participants were asked to evaluate a variety of aspects of the UTPREF

system after the elicitation process, but before manually rating all apartments. The following

questions were rated on a 7-point Likert scale, with scores from 1 (“strongly disagree”) to

7 (“strongly agree”); we show average and median responses (with the standard deviation in

parentheses):

Some questions were too hard 1.65 2 (0.65)

My answers reflected my true preferences 6.05 6.5 (1.26)

Some questions were confusing 1.98 2 (1.06)

I fully understood the meaning of each question 6.30 6 (0.71)

I answered some questions carelessly 1.98 2 (1.21)

I understood the task I was asked to do 6.75 7 (0.49)

I found this application easy to use 6.35 7 (0.79)

The task took too much time 2.23 2 (1.01)

I am satisfied with the recommended apartment 5.35 5 (1.19)

The average responses to the last four questions confirm that users understood the minimax-

regret criterion and were reasonably satisfied with system performance. The majority of partic-

ipants understood the task well, found UTPREF easy to use, and were satisfied with its recom-

mendation. Note that satisfaction with the recommended apartment is not solely a function of

recommendation quality, but is strongly influenced by the available units in the database. We

examine recommendation quality next.

Recommendation quality Part 2 of the user session was designed to provide a quantitative

measure of UTPREF’s ability to recommend the “right” product. The major task in Part 2 in-

volved rating all apartments in the database and sorting those rated highest (and those with low

minimax regret according to UTPREF ), thus providing valuable information about the accu-
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racy of the recommended outcome. In the initial rating phase, of 40 participants, 34 assigned

the highest rating (2) to the recommended apartment, five rated it 1, and one participant rated

it the lowest (0). This suggests that the recommended apartment is almost always a desirable

option.

When asked next to sort the final list of 7–12 “very promising” apartments (as described

above), users ranked the UTPREF-recommended apartment very highly. The average position

(rank) of the recommended apartment was 4.00 (std. dev. 3.32), and the histogram of rankings

in Fig. 6.3a shows that 14 users placed the recommended outcome at the top of the sorted list,

and majority ranked it among the top three (median 3.0). This too confirms the recommenda-

tion accuracy of UTPREF, and is arguably more informative than the coarse 3-point rating of

the recommended item.

The position of the recommended apartment in the sorted list does not reveal how from

optimal it is in terms of value. Asking participants to specify the value difference (in dollars)

between the best and worst options in the sorted list lets us roughly quantify the difference

between the best apartment in the database and UTPREF’s recommendation using a qrank

score, a quantitative analog of rank (the lower the qrank value, the better). The qrank of an

outcome is computed by assuming that apartments in the sorted list are evenly distributed in

terms of utility (willingness to pay). For example, if the difference between the best and the

worst apartments in a sorted list of 11 apartments is $1000, then the qrank of the top outcome

is $0, the worst outcome $1000, and the fifth apartment $400. Fig. 6.3b shows the histogram of

the qrank of the recommended apartment across all participants. Only six users have a qrank

greater (worse) than $200; equivalently, for 34 of 40 participants, the recommended apartment

is within $200 (w.r.t. monthly rent) of the optimal apartment, under qrank assumptions. The

average qrank is $100.74 (with std. dev. $151.48); and importantly, the median qrank is $44.95.

Thus when the recommended apartment is not optimal it is generally quite close to optimal

(within $45 for the majority of users).
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Time An important measure of user experience is the duration of the interaction (and the

number of queries) required by the recommendation system to find a good product. Fig. 6.4(a-

c) shows how long participants took to complete the UTPREF elicitation session (Parts 1A

and 1B), and to rate all items in the database (Part 2). Of special significance is the fact that

participants spent more time, on average, searching through all apartments in the database (708

seconds) than completing Parts 1A and 1B combined (145 seconds plus 336 seconds) of the

elicitation process. This difference is statistically significant (p = 0.00009). This holds despite

the fact that by the time participants rated the apartments, they had become quite familiar with

domain attributes and range of prices, and had time to explore and verify their own preferences

by completing the UTPREF elicitation session (Part 1). In addition, increasing the size of the

database directly and proportionately impacts the time required to examine all apartments; in

fact, we limited our database to 100 apartments because it would be too time-consuming and

tedious for users to rate a larger number of options. However, simulation results (Chapter 5,

Braziunas and Boutilier (2007)) show that UTPREF can handle larger databases without a

significant increase in the number of queries.

Fig. 6.4d shows the histogram of the number of elicitation queries in Part 1B (which ex-

cludes choosing the reference outcome, and sorting local outcomes for each factor). Even

though the participants had the option to cut the process short after 10 queries, all but two con-

tinued until the regret of the recommended apartment dropped to zero. The average number of

queries until termination was 21.70 (std. dev. 8.84), and the median was 19.5, illustrating that

the majority of users find a near-optimal apartment in under 20 queries. It is also important

to note that most of these queries do not require full apartment comparisons and involve only

small subsets of attributes.

6.4.2 Query costs

One of the goals of the user study was to estimate the cognitive costs of different query types.

We measured the durations and user ratings for the five types of queries described previously:
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ACQ, GCQ, GCPQ, ABQ, and LBQ (in addition, local comparison queries were implicitly

used in the local outcome sorting task, but were not rated by users). At the end of the elic-

itation session, participants were asked to rate the query types they encountered—“In terms

of difficulty, how would you rate the type of question shown?”—on a 7-point Likert scale—

ranging from 1 (“extremely difficult”) to 7 (“extremely easy”). In addition, the amount of time

participants spent responding to each query was recorded. The following table shows average

rating and response duration for every query type:

Query type Avg. rating Avg. duration (sec)

ACQ 5.28 13.95

GCQ 5.88 15.58

GCPQ 5.18 14.65

ABQ 5.41 14.86

LBQ 4.23 21.27

A one-way ANOVA that tests whether all the groups are the same (against a hypothesis

that they are all different) indicates that the query durations and ratings are significantly dif-

ferent (p=0.00047 and p=0.007, respectively). However, the same test shows no significant

differences in ratings or duration among global queries (p=0.80 and p=0.56, respectively). In

a multiple comparison procedure at the 0.05 level, only LBQs exhibit significant differences

from every other query (in durations and ratings).

Both the rating and response time can be used as a proxy for the query’s cognitive diffi-

culty. We can see that all global queries have very similar average ratings (between “easy” and

“very easy”) and response times. Somewhat surprising is the lack of significant differentiation

between global bound and comparison queries. In general, users found local bound queries to

be the most difficult. From our observations and user comments it is clear that one reason was

their novelty and occasional confusion about their meaning; better visual design and explana-

tions might make the LBQs easier to answer. On the other hand, the average LBQ rating of

4.23 still does not suggest serious difficulty (4 corresponds to a query being “not difficult”). As

far as we are aware, this is the first evaluation and comparison of query costs in the context of
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ALL A: all,

GAI

B: all,

GAI-

nc

C: all,

ADD

D: GCPQ,

GAI

E: GCPQ,

GAI-nc

F: GCPQ,

ADD

Rank of recommended outcome 4.00 3.33 3.29 4.56 4.17 4.33 4.17

Qrank $101 $106 $27 $82 $73 $81 $262

Number of queries 21.70 29.50 27.00 24.56 13.83 18.00 15.00

Part 1A duration (sec) 145 168 174 94 164 181 110

Part 1B duration (sec) 336 401 500 365 191 256 259

Database item rating duration (sec) 708 673 564 828 626 734 787

Table 6.1: Subgroup comparison

preference elicitation systems. This takes a step toward allowing query costs to be traded off

against potential query value in future elicitation strategies.

6.4.3 Comparison of study subgroups

The participants were randomly assigned to one of six subgroups A-F (described above), di-

vided along two axes: Query types—all queries vs. global comparison queries (GCPQ) only;

and Utility function structure—GAI vs. GAI with no conditioning context (GAI-nc) vs. addi-

tive (ADD). Table 6.1 shows the average of the various measures discussed above across the

six subgroups.

GAI with and without local context To properly elicit GAI utilities with intersecting fac-

tors, local queries have to include certain context attributes. For example (see Fig. 6.2c), a

local query about a house in Toronto East (both building type and area are in Factor 1) also

has to specify the reference value of the context attribute 2 bedrooms (which is in Factor 2),

because Factors 1 and 2 intersect. If the context attribute’s reference value were different, say

1 bedroom, user preference for a house in Toronto East could be very different. To test the

importance of local context, local queries for users in subgroups B and E did not include local



CHAPTER 6. UTPREF SYSTEM AND USER STUDY 249

context (everything else was the same as in subgroups A and D; for subgroups C and F, this

distinction is irrelevant, since additive utility functions do not have intersecting factors). The

following table compares key performance metrics:

All queries GCPQ only

A: GAI B: GAI-nc D: GAI E: GAI-nc

Rank 3.33 3.29 4.17 4.33

Qrank $106 $27 $73 $81

Satisfaction 5.00 5.86 5.50 5.67

There are no obvious, statistically significant patterns that emerge from the comparison

of the GAI and GAI-nc groups. Local queries without context attributes seem to perform no

worse than proper, semantically sound queries with local context. There are two plausible

explanations for this. First, we believe it is likely that users maintain a consistent context

themselves (for instance, some salient outcome like their current or desired apartment) without

an explicit specification of it, and automatically assume this context when answering local

queries. Confirmation of this hypothesis requires further research. Second, the GAI model

used in this study is quite simple, with only two overlapping factors. The importance of proper

preferential conditioning generally increases with the complexity of the utility model; thus,

differences might emerge in more complex, cognitively demanding choice scenarios.

GAI vs. additive utility models To compare the effectiveness of more flexible GAI models

with additive models, we group the GAI and GAI-nc subgroups and compare performance with

that of the additive group. The table below compares average Rank, Qrank, and user satisfac-

tion with the recommended apartment for both groups; we show results broken out by query

type, and with both query groups combined (as well as p-values in a pairwise comparison):
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Combined All queries GCPQ only

GAI ADD p- GAI ADD p- GAI ADD p-

Subgrp ABDE CF val AB C val DE F val

Rank 3.76 4.40 .57 3.31 4.56 .38 4.25 4.17 .97

Qrank $70 $164 .10 $63 $82 .71 $77 $262 .07

Satisf. 5.52 5.07 .26 5.46 4.89 .21 5.58 5.33 .68

Although we cannot draw strong, statistically significant conclusions from these results due to

the small sample size and high variability, it appears that a more complex GAI utility model

leads to better performance with respect to recommendation quality than a simple additive util-

ity model. The only statistically significant advantage is in Qrank (at the 0.1 level). The slight

advantage of GAI models is maintained across both types of strategies as well as when both

strategy results are combined together. We should bear in mind that the GAI utility factoriza-

tion used in this study is quite simple, and not tailored to the preference structure of individual

participants. In more complex domains, the advantage of a more flexible GAI model could

be much more pronounced; but the differences in this study are suggestive enough to warrant

further exploration.

All queries vs. GCPQ only queries To explore variation along the query axis, we form the

all queries group by merging subgroups A,B,C and the GCPQ only group by merging sub-

groups D,E,F. Key performance metrics are shown in the following table (the p-value column

shows results from the pairwise comparisons of the first two columns):

All queries GCPQ only p-value

Rank of recommended outcome 3.82 4.22 .71

Quantitative rank (qrank) $70 $132 .25

Number of queries 26.68 15.61 .000018

Part 1B duration (sec) 418 235 .0024

Since global comparison queries concentrate on current solution outcomes, minimax regret

tends to decrease very quickly, and on average, the process converges after only 15.61 queries.
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The all queries strategy uses more queries on average, in large part because it explores a

broader utility region by combining both local and global, comparison and bound queries.

On the other hand, we suspect that the all queries strategy has some advantage with respect to

the final recommendation, whose quality is somewhat better in average rank and qrank (though

the difference is not statistically significant): the flexibility of its query space allows it to home

in on true utility more precisely.

In domains with a relatively small number of attributes (where the user can comfortably

compare two arbitrary outcomes), using the GCPQ query is arguably the best option. The

strategy reduces minimax regret better than any other strategy (both with simulated and actual

users), uses easy-to-understand global comparison queries, and does not take any time for query

selection, since it uses the two current MMR solution outcomes. On the other hand, by being

able to balance many types of queries, the all queries strategy is more flexible and adaptable

to a variety of domains with specific query requirements. For example, in domains with large

number of attributes, local queries become very useful, since they only involve a small subset

of attributes.

6.5 Conclusion

6.5.1 Related work

Recommendation systems assist users in the navigation of large product spaces and recommend

decisions in the presence of many alternatives. The general research field of recommendation

systems is too large to survey here. We focus instead on approaches that construct explicit mod-

els of user preferences and use those models for recommendations.1 Some previous decision-

1While rarely formulated as developing explicit utility models, some approaches can be so interpreted. For
example, in collaborative filtering (Konstan, Miller, Maltz, Herlocker, Gordon, and Riedl, 1997; Breese, Heck-
erman, and Kadie, 1998; Herlocker, Konstan, Terveen, and Riedl, 2004), matrix factorization methods (Rennie
and Srebro, 2005) can be viewed as learning linear user utility models over latent product attributes. Critiquing
systems (Burke, 2002) facilitate navigation by allowing the user to request changes to a candidate product descrip-
tion in specific dimensions (e.g., increasing one attribute) and returning products that vary in that dimension but
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theoretic approaches to preference assessment include work by White et al. (1984); Boutilier

et al. (2004c); Salo and Hämäläinen (2001); Toubia et al. (2004). In these models, users an-

swer preference queries incrementally, each response posing constraints on the parameters of a

user’s utility function. Such models offer stronger guarantees on decision quality, but often at

the expense of much more intense data requirements. Furthermore, such models are developed

or deployed largely for the case of restrictive additive utility models, while strategies for query

choice are often ad hoc.

Recently, the minimax regret has been proposed as an intuitive criterion for decision making

in the presence of utility function uncertainty as well as an effective driver of preference elici-

tation (Salo and Hämäläinen, 2001; Boutilier et al., 2006). It has been applied to unstructured

product models (Wang and Boutilier, 2003), additive models (Boutilier et al., 2004c) and gen-

eralized additive models (Boutilier et al., 2006; Braziunas and Boutilier, 2007). In simulation,

it has proven to work extremely well. However, until our UTPREF user study, no significant

study has explored the effectiveness and intuitive appeal of minimax regret-based elicitation

with real users.

Finally, work by Viappiani and Boutilier (2009, 2010); Boutilier, Regan, and Viappiani

(2009a,b, 2010) highlights two potential future directions that are very relevant to improving

the UTPREF system: additional query types in the form of choice sets (Viappiani and Boutilier,

2009, 2010), and feature (attribute) elicitation (Boutilier et al., 2009a,b, 2010).

6.5.2 Contributions and future work

Explicit user utility modeling with GAI utility functions, semantically sound and user-friendly

queries, and minimax regret-based preference elicitation and recommendation are the main

features distinguishing UTPREF from other recommendation systems. While effective in sim-

ulated experiments, prior to our user study, minimax regret-based elicitation had not been tested

are otherwise similar; Reilly, Zhang, McGinty, Pu, and Smyth (2007); Viappiani et al. (2006) use an explicit user
preference model within the critiquing framework.
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in realistic domains with real users. Our results from the user study with 40 participants are

very encouraging. We demonstrate that minimax regret is an intuitive, comprehensible de-

cision criterion that can be used to drive very effective querying strategies. UTPREF offers

high-quality recommendations with minimal user preference revelation. We also show that

GAI utility models perform better than simple additive models with respect to several recom-

mendation quality measures. We measure the cognitive costs of different query types, and

observe that simple local queries that omit the local context information perform as well as

semantically correct local queries.

There are many possible extensions to our current work; some, such as incorporating prob-

abilistic information about user utilities into query strategies, and exploring additional types of

queries (Viappiani and Boutilier, 2009, 2010), were discussed in Chapter 5.

A significant current limitation of UTPREF is the assumption that a user’s utility func-

tion structure is known, or can be approximated well by a domain expert. Of course, such

an assumption is not always realistic, since preferential dependencies between attributes can

vary considerably from user to user. Ideally, an elicitation process would combine assessing

preference structure (i.e., determining what sets of attributes are additively independent) with

the acquisition of numerical utility parameter values. The process would be optimized so that

the user is asked only relevant questions about preferential independence between certain sets

of attributes. Solving such a problem is a difficult task. Relevant work includes early deci-

sion analysis texts by Fishburn (1970); Keeney and Raiffa (1976), and more recent articles by

Chajewska and Koller (2000); Engel and Wellman (2008b, 2010); Baqui (2007); Brafman and

Engel (2009, 2010). Utility structure personalization is a natural, although non-trivial, next

step in the development of UTPREF.

A related issue is product feature elicitation (Boutilier et al., 2009a), since decision alterna-

tives are not always described in terms of features the user is most comfortable reasoning about.

The aim here is to determine the most natural features to describe a product or outcome to al-
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low users to most comfortably assess their preferences. For successful practical deployment

of recommendation systems we need to address other human-centred issues as well, such as

dealing with noisy user responses, verifying the quasilinearity assumption (which implies that

users are risk-neutral with respect to item cost), correcting for various ordering and framing

biases (Pu et al., 2003), and, in general, making the interaction more natural and intuitive.

The results from the UTPREF user study provide the first assessment of query costs. Incor-

porating such query costs into elicitation strategies would allow us to investigate the tradeoffs

between reducing elicitation effort on the part of the user and improving recommendation qual-

ity.



Chapter 7

Conclusion

In this thesis, we presented a decision-theoretic framework for building decision support sys-

tems that incrementally learn preferences of individual users over multiattribute outcomes and

then provide recommendations based on the acquired preference information. Our framework

is based on the well-established models of human preference representation and rational de-

cision making, widely assumed in economics, decision analysis, operations research, AI, and

other disciplines (von Neumann and Morgenstern, 1947; Keeney and Raiffa, 1976). By com-

bining such decision-theoretically sound modeling with effective computational techniques

and certain user-centric considerations, we demonstrate the feasibility and potential of practi-

cal autonomous preference elicitation and recommendation systems.

Elicitation and recommendation framework

More concretely, in this thesis we focused on decision scenarios in which a user can obtain any

outcome from a finite set of available outcomes. The optimal decision is the one that leads to

the outcome with the highest utility. The outcome is space is multiattribute; each outcome can

be viewed as an instantiation of a set of attributes with finite domains. The user has preferences

over outcomes that can be represented by a utility function. We assume that user preferences

are generalized additively independent, and, therefore, can be represented by a GAI utility

255
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function. GAI utilities provide a flexible representation framework for structured preferences

over multiattribute outcomes; they are less restrictive and, therefore, more widely applicable

than additive utilities.

In many decision scenarios with large and complex decision spaces (such as making travel

plans or choosing an apartment to rent from hundreds of available options), selecting the opti-

mal decision can require a lot of time and effort on the user’s behalf. A decision support system

can help the decision maker by recommending a decision based on its knowledge of the deci-

sion scenario and the acquired knowledge of the user’s preferences. While the set of outcomes

and available decisions are often the same for many users, user preferences over outcomes can

vary substantially from user to user. Since obtaining the user’s complete utility function is

generally infeasible, the decision support system has to support recommendation with partial

preference information. If a probabilistic prior about the user’s utility function is available, the

decision support system evaluates the expected utility of each available option (with expecta-

tion taken over all possible utility functions) and recommends the outcome with the highest

expected utility. If such prior information is not available, the system represents its uncertainty

about user utilities by maintaining a set of feasible user utilities and provides recommenda-

tions based on the robust minimax regret criterion; that is, it recommends the outcome with

the smallest maximum regret (with respect to all adversarial instantiations of feasible utility

functions).

When the system’s knowledge of the user’s preferences is limited, the recommended out-

come might be of much lower value than the optimal outcome (with respect to the user’s true

utility function). By obtaining additional preference information, the system can improve its

recommendations. In the elicitation framework considered in this thesis, the decision support

system can ask a series of questions about the user’s preferences and use the user’s responses

to reduce its uncertainty about the user’s utility function. The interactions are limited to a small

set of local and global query types that result in linear constraints on the GAI utility function

parameters. The decision support system repeatedly selects a preference query from the set
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of available queries, receives a user response, updates its current information about the user’s

utility function, and continues until termination criteria are met; it then recommends the best

outcome with respect to the obtained preference information.

Chapter summaries

Chapter 2 introduces relevant background material from decision and utility theory (such as

decision making under certainty and uncertainty, preference structures over multiattribute out-

comes, and factored utility representations), and provides a historical and cross-disciplinary

overview of previous approaches to preference elicitation. We concentrate on a few key aspects

of the problem: what types of queries can be used to extract user preferences, how to repre-

sent utility uncertainty, how to make decisions with partial preference information, and how

to devise good elicitation strategies. We survey research fields outside computer science (both

historical and current) where preference elicitation plays a central role: imprecisely specified

multiattribute utility theory (ISMAUT), its extensions to engineering design and configuration

problems, conjoint analysis (in marketing), and analytical hierarchy process (in decision anal-

ysis). We also provide an overview of recent developments in preference elicitation in the field

of AI.

Utility function structure in multiattribute domains is crucial for concise representation and

elicitation of preferences. Until recently, additive utility models have enjoyed almost universal

popularity both in practice and research. However, there is a tradeoff between simplicity and

applicability. Generalized additive models are general enough to subsume both simple additive

models (by having factors with no shared attributes) and completely unstructured models (by

using only one factor altogether). In Chapter 3, we describe the decision-theoretic foundations

that support local elicitation of GAI utilities and introduce the parameterized representation

of GAI utilities that is used throughout the thesis. The first part of the chapter is a detailed

introduction to GAI utility models, based on the original work by Fishburn (1967b). The

second part deals with semantically sound representation of local structure in GAI utilities.



CHAPTER 7. CONCLUSION 258

Local structure facilitates not only representation, but also elicitation of utility parameters. In

the last part of the chapter, we present the set of queries for elicitation of GAI utility parameters

that we use in our elicitation framework (in both Bayesian and strict uncertainty settings).

The foundational material in Chapter 3 applies equally to the following chapters, which

deal with the Bayesian (Chapter 4) and strict (Chapter 5) representation of uncertainty over

possible GAI utility functions. In each case, two issues are addressed: 1) how to make good

decisions when full utility information is not available; and, 2) what is the best elicitation

strategy when further preference information can be obtained. When uncertainty over utilities

is quantified probabilistically, Bayesian principles can be applied to both decision making and

elicitation of user preferences. In Chapter 4, we propose a mixture-of-uniforms probability

model to specify uncertainty over the local parameters of the GAI utility function and use it to

perform effective elicitation driven by a myopic EVOI strategy. We conclude the chapter with

experimental results on a few large problems with simulated user utilities.

Chapter 5 deals with GAI utility elicitation under strict uncertainty. We present tractable

algorithms for utility elicitation for configuration (using mixed integer programs) and database

(using intelligent search techniques) problems. The minimax regret criterion is used for both

decision making and elicitation under utility function uncertainty. We finish the chapter by

comparing the performance of various elicitation strategies on several configuration and database

problems (with simulated users).

Chapter 6 focuses on evaluation of the minimax regret-based approach to preference elici-

tation and recommendation. In the first part of the chapter, we present the UTPREF recommen-

dation system that searches multiattribute product databases using the minimax regret criterion.

In the second part, we report on a study involving 40 users interacting with the UTPREF sys-

tem, configured to help users find rental accommodation in Toronto. The study is designed to

test the effectiveness of regret-based elicitation, evaluate user comprehension and acceptance

of minimax regret, and assess the relative difficulty of different query types.
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The thesis chapters are based on the following publications:

• Local Utility Elicitation in GAI Models (Braziunas and Boutilier, 2005): Chapters 3 and 4;

• Minimax Regret-based Elicitation of Generalized Additive Utilities (Braziunas and Boutilier,

2007): Chapters 5 and 6;

• Elicitation of Factored Utilities (Braziunas and Boutilier, 2008): Chapter 2;

• Assessing Regret-based Preference Elicitation with the UTPREF Recommendation Sys-

tem (Braziunas and Boutilier, 2010): Chapter 6.

Contributions

Here, we summarize the main contributions of this thesis. In the following section, we discuss

the limitations and suggest directions for future work.

• GAI utility function parameterization in terms of global and local parameters

In Chapter 3, we present a locally parameterized GAI model that, together with appro-

priate types of queries introduced in Section 3.3, can be used for effective and decision-

theoretically sound elicitation of GAI utilities.

To design proper elicitation techniques for GAI models, we first have to solve the prob-

lem of subutility function semantics. Unlike additive models, GAI models require much

more care in calibration because of the possible overlap of factors (sharing of attributes).

If factors overlap, there are infinitely many valid decompositions of the same utility func-

tion in which the subutility functions vary considerably (i.e., not simply through some

positive affine transformation). It is quite possible that the apparent “local preferences”

for factor instantiations can be reversed in two different valid representations. Our iden-

tification of this problem is one of the main contributions of Chapter 3.1

1The GAI elicitation technique proposed by Gonzales and Perny (2004) uses global outcome queries and
implicitly acknowledges the same issue.



CHAPTER 7. CONCLUSION 260

Our solution to this problem rests on using Fishburn’s original canonical representation

of subutility functions (Fishburn, 1967b) as a basis for decision-theoretically sound rep-

resentation and elicitation of GAI utilities. We introduce a parameterized representation

of GAI utilities that preserves the local structure of additive models, analyze its proper-

ties, and provide a graphical search algorithm for computing the GAI structure parame-

ters. By taking into account the conditioning sets of attributes that shield the influence

of other attribute values on local preferences over factor instantiations, we generalize

semantically sound local value functions of additive models to GAI models. As in ad-

ditive models, the LVFs calibrate local preferences relative to the best and worst factor

suboutcomes, assuming fixed values of the attributes in the conditioning set. The LVFs

are local, because they involve only attributes in single factors and their (usually small)

conditioning sets.

Using our representation, GAI models can be elicited by using both local queries about

preferences over small subsets of attributes and global queries for calibration across util-

ity factors. In Section 3.3, we present several types of semantically sound local and

global queries that are both easy for users to understand and respond, and result in linear

constraints on GAI utility parameters. Such queries form the basic interaction units in

our elicitation framework.

• Bayesian elicitation of GAI utilities

Assuming that the system has prior probabilistic information about the GAI local value

function parameters, we present an algorithm for Bayesian utility elicitation and deci-

sion making with GAI utilities (previous work assumed flat utility representations). In

particular, we show that if the priors over local parameters are specified using mixtures

of uniforms, then the best myopic local bound query on a specific LVF parameter can be

computed analytically. This is due to the fact that mixtures of uniforms are closed un-

der updates resulting from bound queries, which makes it possible to maintain an exact

density over utility parameters throughout the elicitation process. We use this result to
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develop a tractable procedure for myopically optimal preference elicitation. Experimen-

tal results with simulated user utilities confirm the benefits of our approach and show

that it can potentially support interactive real-time elicitation.

• Minimax-regret based elicitation of GAI utilities

We extend the previous work of Boutilier et al. (2001, 2003b, 2005, 2006) on applying

minimax regret to elicitation of GAI utility models in several ways. First, we show how to

incorporate semantically sound local queries into GAI preference elicitation framework,

and how to compute minimax regret in configuration problems using the parametric rep-

resentation of GAI models. Second, we also consider database domains, and apply min-

imax search pruning techniques to speed-up regret computation in databases domains.

Third, for elicitation, we extend the current solution heuristic idea to derive scores for

all types of queries described in Sec 3.3; specifically, the incorporation of comparison

queries into the framework is of great practical significance, since such queries are very

natural for users to understand and respond to (see Chapter 6).

• Evaluation of the minimax-regret based elicitation framework with real users

The minimax regret-based recommendation system UTPREF is the first system that: a)

explicitly uses GAI utility functions for internal preference representation; b) employs

semantically sound and user-friendly preference queries; and, c) uses the minimax regret

criterion for preference elicitation and recommendation. While effective in simulated

experiments, prior to our user study, minimax regret-based elicitation had not been tested

in realistic domains with real users. We conducted a user study with 40 participants and

obtained very encouraging results. We demonstrate that minimax regret is an intuitive,

comprehensible decision criterion that can be used to drive effective querying strategies.

UTPREF offers high-quality recommendations with minimal user preference revelation.

We also show that GAI utility models perform better than simple additive models with



CHAPTER 7. CONCLUSION 262

respect to several recommendation quality measures. We measure the cognitive costs of

different query types, and observe that simple local queries that omit the local context

information perform as well as semantically correct local queries.

Future work

Our proposed framework for decision-theoretic preference elicitation is just one of the many

steps towards the goal of building successful autonomous recommendation systems. Many

aspects of the framework can be improved and extended. Here, we list some of its limitations

and promising future research directions.

• GAI structure assessment One assumption that we make in this thesis is that a user’s

utility function structure is known, or can be approximated well by a domain expert.

Of course, such an assumption is not always realistic, since preferential dependencies

between attributes can vary considerably from user to user. Ideally, an elicitation process

would combine assessing preference structure (i.e., determining what sets of attributes

are additively independent) with the acquisition of numerical utility parameter values.

The process would be optimized so that the user is asked only relevant questions about

preferential independence between certain sets of attributes.

Solving such a problem is a difficult task. Some previous work of relevance include early

decision analysis texts by Fishburn (1970); Keeney and Raiffa (1976), and more recent

work by Chajewska and Koller (2000); Engel and Wellman (2008b, 2010); Baqui (2007);

Brafman and Engel (2009, 2010). Utility structure personalization is a natural, although

non-trivial, next step in the development of UTPREF.

• Extending the elicitation framework

The elicitation framework described in this thesis is quite rigid: users interact with the

decision support system by providing responses to a limited set of queries. We assume

that users can clearly articulate their preferences and provide meaningful, accurate and
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consistent responses. Most users are not experts and therefore require preliminary train-

ing and easy-to-understand interfaces. Real case studies often provide evidence of in-

consistent responses, errors, and various forms of biases (Simon, 1955; Tversky and

Kahneman, 1974; Camerer et al., 2003; Pu et al., 2003).

Successful implementation of decision support systems requires consideration of both

descriptive and prescriptive approaches to the preference elicitation problem. In addi-

tion to the sound decision-theoretic framework, we also need to address human-centred

issues, such as framing and ordering effects, sensitivity analysis and robustness, and the

reliability and acceptability of different modes of interaction (Pu et al., 2003). Such

empirical validation is only obtainable with further user studies, which can make our in-

teraction models more natural and understandable for end users, as well as more effective

in providing good recommendations.

The queries that we use in our framework are well grounded in terms of decision-

theoretic semantics and simple enough to be used in actual interactive applications with

human subjects. However, there is a variety of additional preference query types and

modes of interaction that can be effective in eliciting human preferences. Conversa-

tional recommender systems provide mixed-initiative interactions, with both the system

and the user working together to optimize the exploration of large outcome spaces. In

such systems, user feedback can be obtained as direct responses to preference queries,

or a critique of displayed options, either by choosing one option, or reconfiguring some

given options (Burke, 2002; Pu and Faltings, 2004; Viappiani et al., 2006; Reilly et al.,

2007; Viappiani and Boutilier, 2009, 2010). For each new query type, we have to provide

a user interface, incorporate it into our modeling framework, and devise good heuristic

scoring functions for use in mixed query strategies.

A related issue is product feature elicitation (Boutilier et al., 2009a), since decision al-

ternatives are not always described in terms of features the user is most comfortable

reasoning about. The aim here is to determine the most natural features to describe a
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product or outcome to allow users to most comfortably assess their preferences. For

successful practical deployment of recommendation systems we need to address other

human-centred issues as well, such as dealing with noisy user responses, verifying the

quasilinearity assumption (which implies that users are risk-neutral with respect to item

cost), correcting for various ordering and framing biases, and, in general, making the

interaction more natural and intuitive.

• Improvements to Bayesian elicitation

There are many ways to represent probabilistic uncertainty over utilities. In this the-

sis, we only explored the setting in which the system has a mixture-of-uniforms prior

over LVF parameters. Investigating other forms of prior distributions (over possibly dif-

ferent utility parameter sets) remains an open research direction. A related problem is

acquisition of prior knowledge. Priors could be provided by experts, or learned from

data (Chajewska et al., 1998). Although public utility databases are very scarce, their

availability is increasing (Portabella Clotet and Rajman, 2006; Braziunas and Boutilier,

2010). Recent advances in collaborative filtering on large datasets of product ratings by

hundreds of thousands of users can be leveraged to provide informative priors for groups

of users with similar interests (Breese et al., 1998; Adomavicius and Tuzhilin, 2005;

Salakhutdinov and Mnih, 2007).

To improve the Bayesian elicitation procedure, we need to incorporate more query types

(we only discussed local bound queries that, for a given query parameter, allow us to

compute the best query bound analytically with mixture-of-uniforms uncertainty repre-

sentation). Comparison queries present serious challenges when uncertainty is repre-

sented by a parametric probability model since responses to comparison queries impose

“diagonal” (rather than axis-parallel) constraints on posterior distributions. This requires

sampling and refitting for belief state maintenance and also complicates query optimiza-

tion. However, incorporation of more types of queries is vital for practical systems,

since users are likely to be more comfortable with simpler binary comparison queries



CHAPTER 7. CONCLUSION 265

than bound queries.

• Combined Bayesian-MMR approach Minimax regret is a robust decision criterion,

providing decision quality guarantees for any possible realization of the user’s utility

function. In some domains, it is desirable to use the minimax regret criterion for fi-

nal recommendation, even though prior probabilistic information about user utilities is

available. We could take advantage of probabilistic information about user utilities in

optimizing elicitation strategy, but still use the robust MMR decision criterion for the

final decision (Wang and Boutilier, 2003). Combining the two approaches remains a

promising future research area.

• Sequentially-optimal elicitation For computational reasons, we only explored myopic

query strategies that are not sequentially optimal because they do not consider the impact

of future queries when computing the value of the decision support systems information

state (represented by a belief state in the Bayesian elicitation setting, and by a set of

feasible utility functions in the strict uncertainty setting). Solving for the sequentially

optimal query policy is equivalent to solving a POMDP with a continuous state space,

which is a very hard problem (Boutilier, 2002). Several approaches for solving the pref-

erence POMDP have been proposed, including value function approximation (Boutilier,

2002) and searching for good finite controller policies (Braziunas and Boutilier, 2004).

However, more research is needed to scale these solutions to realistic problems. An-

other direction would be for the system to perform more than one-step lookahead online

when evaluating queries (if the system has enough time between queries). With a deep

lookahead horizon, the value of a query would approach its sequentially optimal value.
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ISMAUT

From section 2.3.1, J is the set of prior pairwise preferences between alternatives in A, R(U)

is the derived set of pairwise preferences between alternatives given the feasible utility set U,

and ND(U) is the set of nondominated alternatives. The set ND(U) can be straightforwardly

computed from R(U). The central computational task is therefore to compute R(U) from U.

Recall that (x,y) ∈ R(U) if and only if w · [v(x) − v(y)] ≥ 0, for all 〈w, v1, . . . , vn〉 ∈ U.

This amounts to verifying that

min
〈w,v1,...,vn〉∈U

w · [v(x)− v(y)] ≥ 0.

If J = ∅, then there is no prior information about pairwise preferences between alternatives,

and no coupling between the weights and value functions. In this case, researched by White

et al. (1983), Eq. 2.33 becomes

min
w∈W

(
N∑
i=1

wi min
vi∈Vi

[vi(xi)− vi(yi)]

)
≥ 0. (A.1)

This problem can be solved by N + 1 linear programs.

Adding constraints to the set J complicates the solution, because the weight and value

function constraints get tied together by comparisons of global alternatives. Anandalingam

and White (1993) propose a general penalty function method for determining membership in

R(U). However, since such methods might suffer from slow convergence and ill-conditioning
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(Bazaraa and Shetty, 1979), two special cases of approximating R(U) are analyzed by White

et al. (1984), and Anandalingam and White (1993).

Let Umin be a set of tuples 〈w, v1, . . . , vn〉 such that w ∈ W , vi ∈ Vi, and for all

(xj,yj) ∈ J ,
N∑
i=1

wi min
vi∈Vi

[vi(x
j
i )− vi(y

j
i )] ≥ 0. (A.2)

Similarly, let Umax be a set of tuples 〈w, v1, . . . , vn〉 such that w ∈ W , vi ∈ Vi, and for all

(xj,yj) ∈ J ,
N∑
i=1

wi max
vi∈Vi

[vi(x
j
i )− vi(y

j
i )] ≥ 0. (A.3)

Inequalities A.2 and A.3 impose linear constraints on weights. Therefore, solving forR(Umin)

and R(Umax) is straightforward, since this case is similar to the J = ∅ case described above.

How can Umin and Umax be used to approximate R(U)? From Eq. A.2 and A.3, we note

that Umin ⊆ U ⊆ Umax, and therefore,R(Umax) ⊆ R(U) ⊆ R(Umin). Without computing

R(U), we can infer two facts:

(x,y) ∈ R(Umax) =⇒ (x,y) ∈ R(U),

(x,y) /∈ R(Umin) =⇒ (x,y) /∈ R(U).

Therefore, it is only when (x,y) /∈ R(Umax) or (x,y) ∈ R(Umin) that membership in R(U)

needs to be determined directly.
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GAI representation theorem

This derivation is part of the proof of the GAI representation theorem (Section 3.1.2), based on

the original work by Fishburn (1967b).

The two marginal distributions Pj and Qj are:

Pj = αxj +
∑
k≥2,
k even

∑
S∈Rk

αxj[∩s∈SIs],

Qj =
∑
k≥1,
k odd

∑
S∈Rk

αxj[∩s∈SIs],

where α = 1
2M−1 , R is the power set of factor indices {1, . . . ,M}, and Rk ⊆ R (for k =

0, . . . ,M ) is the set of subsets in R whose size is k. Consequently, the size of Rk is
(
M
k

)
.
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We need to show that Pj = Qj:

Pj = αxj +
∑
k≥2,
k even

∑
S∈Rk

αxj[∩s∈SIs]

= αxj +
∑
k≥2,
k even

∑
S∈Rk,
j∈S

αxj[∩s∈SIs] +
∑
S∈Rk,
j /∈S

αxj[∩s∈SIs]



= αxj +
∑
k≥2,
k even

 ∑
S∈Rk−1,
j /∈S

αxj[∩s∈SIs] +
∑
S∈Rk,
j /∈S

αxj[∩s∈SIs]


= αxj +

M∑
k=1

∑
S∈Rk,
j /∈S

αxj[∩s∈SIs]

= αxj +
∑
S∈R1,
j /∈S

αxj[Is] +
∑
k≥3,
k odd

 ∑
S∈Rk−1,
j /∈S

αxj[∩s∈SIs] +
∑
S∈Rk,
j /∈S

αxj[∩s∈SIs]



=
∑
S∈R1,
j∈S

αxj[Is] +
∑
S∈R1,
j /∈S

αxj[Is] +
∑
k≥3,
k odd

∑
S∈Rk,
j∈S

αxj[∩s∈SIs] +
∑
S∈Rk,
j /∈S

αxj[∩s∈SIs]



=
∑
k≥1,
k odd

∑
S∈Rk,
j∈S

αxj[∩s∈SIs] +
∑
S∈Rk,
j /∈S

αxj[∩s∈SIs]


=
∑
k≥1,
k odd

∑
S∈Rk

αxj[∩s∈SIs]

= Qj.�
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Domains

C.1 Car rental domain

The car-rental problem is modeled with 26 variables that specify various attributes of a car

relevant to typical rental decisions (Boutilier et al., 2003b, 2005, 2006). Variable domains

range from 2 to 9 values, resulting in 61,917,364,224 possible configurations. The GAI model

consists of 13 local factors, each defined on at most five variables; the model has 378 utility

parameters.

Attributes

1. Car class: economy, compact, medium, full, premium, luxury, van, suv, convertible

2. Number of cylinders: 4, 6, 8

3. Seat capacity: 4, 5, 6, 7

4. Traction type: front, rear, 4wd

5. Cruise control: no, yes

6. Sound system: radio, radio cassette, radio cassette cd

7. Storage capacity: 2, 3, 4

8. Child safety lock: no, yes

9. Power steering: no, yes

270



APPENDIX C. DOMAINS 271

10. Airbags: no, driver, both

11. Air conditioning: no, yes

12. Transmission: manual, auto

13. ABS: no, yes

14. Car origin: import, domestic

15. Car manufacturer: kia, hyundai, chevy, gm, chrysler, ford

16. Rental agency: national, avis, enterprise, thrifty, dollar, budget

17. Locks: key, power, keyless

18. Remote locks: no, yes

19. Power windows: no, yes

20. Sunroof : no, yes

21. Tinted windows: no, yes

22. Climate control: no, yes

23. Power driver seat: no, yes

24. Steering wheel tilt: no, yes

25. Delay wipers: no, yes

26. Power mirrors: no, yes

Factors

• F1 = {Car class,Child safety lock}

• F2 = {Number of cylinders, Seat capacity}

• F3 = {Car class,Traction type}

• F4 = {Car class, Storage capacity}

• F5 = {Car class,Number of cylinders,Cruise control, Sound system}

• F6 = {Air conditioning,Power windows}

• F7 = {Car origin,Locks,Remote locks,Power mirrors}
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• F8 = {Car manufacturer,Rental agency}

• F9 = {Car class,Transmission}

• F10 = {Remote locks,Power windows, Sunroof,Tinted windows, Steering wheel tilt}

• F11 = {Power steering,Airbags}

• F12 = {Transmission,ABS}

• F13 = {Climate control,Power driver seat,Delay wipers}

C.2 Apartment rental domain

The apartment rental problem comprises a database of 200 apartments, described by ten at-

tributes (including price), each having between two and four domain values (Braziunas and

Boutilier, 2010). The GAI model has eight factors.

Attributes

1. Area: TorontoCentral, TorontoEast, TorontoWest, Scarborough

2. Building type: house, apartment, basement

3. No. of bedrooms: 1bedroom, 2bedrooms, 3bedrooms

4. Furniture: unfurnished, furnished

5. Laundry: available, notavailable

6. Parking: available, notavailable

7. Dishwasher: yes, no

8. Storage: yes, no

9. Air conditioning: yes, no

10. Price: $600− $1800
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Factors

• F1 = {Area,Building type}

• F2 = {Building type,No. of bedrooms}

• F3 = {Furniture}

• F4 = {Laundry}

• F5 = {Parking}

• F6 = {Dishwasher}

• F7 = {Storage}

• F8 = {Air conditioning}
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Minimax search with alpha-beta pruning

1 def minimax(getValueFn, N, pruning=’alpha-beta’, MINstart=0):

2 """Perform 2-ply minimax search with pruning

3

4 getValueFn(i,j) is the function that returns terminal value

5 N is the number of rows and columns (MIN choices and MAX choices)

6 pruning: none, alpha, beta, alpha-beta

7 MINstart is the initial MIN choice to consider

8 """

9

10 # betai will eventually be the optimal MIN choice

11 # beta keeps track of the MIN node’s upper bound

12 betai, beta = None, Infinity

13

14 # rows.keys() are row indices (MIN choices)

15 # rows.values() are corresponding alphas (max known element in a row)

16 # initialize all alphas to -Infinity

17 rows = {}

18 for i in range(0, N):
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19 rows[i] = -Infinity

20

21 # Js[i] is a list of unexplored MAX choices for every row (MIN choice) i

22 # initially, Js[i] is a list of numbers from 0 to N-1 for every i

23 Js = [range(0, N) for i in range(0, N)]

24

25 # start is the first MIN choice (row) to try (default: 0)

26 curri = MINstart

27

28 # in the following main loop,

29 # curri will be current MIN choice (row) being explored

30 while len(rows) > 0:

31 alpha = rows[curri]

32 assert(alpha < beta)

33 # remove current row from search frontier

34 del rows[curri]

35

36 # maxj is what MAX would play if MIN chose curri

37 # MAX’s choices are limited to Js[curri]

38 # alpha pruning happens inside maxvalue based on beta

39 if pruning in [’alpha’, ’alpha-beta’] :

40 maxj, maxval = maxvalue(getValueFn, curri, Js[curri], beta=beta)

41 else:

42 # ’none’, ’beta’ (no alpha ppruning)

43 maxj, maxval = maxvalue(getValueFn, curri, Js[curri], beta=Infinity)

44

45 # maxval is only the largest value among Js[curri]

46 # if alpha (computed earlier) is larger,

47 # then max element in row curri is alpha
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48 alpha = max(alpha, maxval)

49

50 # update beta

51 if alpha < beta:

52 betai, beta = curri, alpha

53

54

55 # NEXT MIN CHOICE

56

57 # choose any available MIN choice (row) if no beta-pruning

58 # return (continue) to the beginning of the loop

59 if pruning in [’none’, ’alpha’] and len(rows) > 0:

60 curri = rows.keys()[0]

61 continue

62

63 # beta pruning happens below

64 # strategy: choose MIN row that minimizes current MAX choice maxj

65 # assumption: maxj is a good MAX choice for many MIN choices

66 # (not just curri)

67

68 # go through all available MIN choices (rows.keys()) and

69 # find the one with minimum value (with respect to maxj)

70 mini, minval = None, Infinity

71 for i in rows.keys():

72 alpha = rows[i]

73 # beta pruning:

74 # if row i max known element is already greater than beta,

75 # row i will never be chosen, so we remove it

76 # and go to next row
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77 if alpha >= beta:

78 del rows[i]

79 else:

80 v = getValueFn(i, maxj)

81 # update alpha

82 if v > alpha:

83 alpha = rows[i] = v

84

85 # beta pruning after computing v

86 if alpha >= beta:

87 del rows[i]

88 else:

89 # remove MAX choice maxj from further consideration

90 # because its value was already computed

91 Js[i].remove(maxj)

92 # update minimum

93 if v < minval:

94 mini, minval = i, v

95

96 # next MIN choice is the one that minimizes MAX’s choice maxj

97 curri = mini

98 return betai, beta

maxvalue subroutine

1 def maxvalue(getValueFn, i, Js, beta=Infinity):

2 """Return largest value among Js (with alpha pruning)

3

4 getValueFn(i,j) is the function that returns terminal value

5 i is the MINchoice (row)
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6 Js are the poassible MAXchoices (columns)

7

8 Function returns the first value among Js

9 that is larger than beta (alpha pruning) or,

10 if all Js are less than beta, than the largest j

11 """

12

13 # highest value known so far

14 maxj, maxval = None, -Infinity

15 for j in Js:

16 v = getValueFn(i,j)

17 # alpha pruning:

18 # row i’s maximum value is at least v,

19 # and if v is greater than beta

20 # the row will never be chosen by the MIN agent.

21 # Therefore, there’s no need to check remaining entries

22 if v >= beta:

23 return j, v

24

25 # else, update maxval

26 elif v > maxval:

27 maxj, maxval = j, v

28 return maxj, maxval
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