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1 Introduction

This is a survey of preference (or utility) elicitation froma computer scientist’s perspective. Preference
elicitation is viewed as a process of extracting information about user preferences to the extent necessary
to make good or even optimal decisions. Devising effective elicitation strategies would facilitate building
autonomous agents that can act on behalf of a user.

Artificial intelligence researchers have always been interested in developing intelligent decision aids
with applications ranging from critical financial, medical, and logistics domains to low-stakes processes,
such as product recommendation or automated software configuration. Decision theory provides solutions
given the system dynamics and outcome utilities. However, user utilities are often unknown and vary more
widely than decision dynamics. Since obtaining full preferences is usually infeasible, this presents a seri-
ous problem to the deployment of intelligent agents that make decisions or recommendations for users with
distinct utilities. Therefore, preference elicitation emerges as one of the more important current challenges
in artificial intelligence.

In this report, we consider both historical and current approaches to preference elicitation, concentrating
on a few key aspects of the problem. We view preference elicitation and decision making as an inseparable
sequential process. Although utility functions are hard toassess, partial information of user preferences
might suffice to make good or optimal decisions. Preference elicitation can be driven to explore utility
regions that are relevant for making decisions. On the otherhand, knowledge of system dynamics and
action constraints helps avoid eliciting useless utility information.

In the first part of the report, we describe “classical” decision analysis, consider ways to represent
uncertainty over utility functions, and summarize variouscriteria for decision making with partial utility
information. If uncertainty is too great to make good decisions, further preference elicitation is needed.
One issue that arises in the elicitation process is which query to ask next. Intelligent querying strategies
steer the elicitation process according to some agreed criteria and should be viewed as part of the combined
preference elicitation and decision making process. We should note that our use of the term “query” also
encompasses more implicit interactions with a user such as changing the presentation of a web page and
observing the link followed by a user.

The second part of the report surveys research fields where preference elicitation plays a central role.
Imprecisely specified multiattribute utility theory (ISMAUT) is one of the earlier attempts to consider
decision making under partial preference information in classical decision analysis. Its extensions to en-
gineering design and configuration problems have been influential in spurring recent interest in preference
elicitation among artificial intelligence researchers. Conjoint analysis and analytical hierarchy process
(AHP) methods were developed largely in isolation in the fields of marketing research and decision analy-
sis; nonetheless, many issues involving preference elicitation are common. We finish by describing some
of the recent advances in preference elicitation in AI.
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2 Decision theory

”Theory of Games and Economic Behavior” by [von Neumann and Morgenstern, 1947]
”The Foundations of Statistics” by [Savage, 1954]
“Utility Theory for Decision Making” [Fishburn, 1970]
”Decisions with Multiple Objectives: Preferences and Value Trade-offs” [Keeney and Raiffa, 1976]
”The Foundations of Expected Utility” [Fishburn, 1982]
”Decision Theory” [French, 1986]
“Statistical decision theory” [French and Insua, 2000]

In this section we provide the background for decision-theoretic treatment of preferences. Decision
theory lies at the intersection of many academic disciplines – statistics, economics, psychology, game
theory, operations research, and others. Assuming a set of axioms forrationalbehavior, it provides a theory
for modeling user preferences and making optimal decisionsbased on these preferences. The following
summary of main concepts is based on [von Neumann and Morgenstern, 1947, Savage, 1954, Fishburn,
1970, Keeney and Raiffa, 1976, French, 1986, French and Insua, 2000].

In the basic formulation, adecision maker(DM) has to select a single alternative (or action)a ∈ A
from the set of available alternatives. Anoutcome(or consequence) x ∈ X of the chosen action depends
on the state of the worldθ ∈ Θ. The consequence functionc : A × Θ 7→ X maps each action and world
state into an outcome. User preferences can be expressed by avalue, or utility, functionv : X 7→ R that
measures desirability of outcomes. The goal is to select an action a ∈ A that leads to best outcomes. If
the world stateθ is known, the set of outcomes is equivalent to the set of alternatives; therefore, in such
a case, we will often use these terms interchangeably. When uncertainty over world states is quantified
probabilistically,utility theoryprescribes an action that leads to the highest expected value.

The outcome space itself might be multidimensional. Most interesting problems fall in this category,
and we survey some ways of exploiting the structure in multidimensional outcome spaces.

2.1 Preferences under certainty

We first consider decisions under certainty. The set of nature states now consists of a single stateθ, and
thus each action leads to a certain outcome. Preferences over outcomes completely determine the optimal
action: a rational person would choose the action that results in the most preferred outcome.

Let X be a set of outcomes over which a preference relation is defined. The notationx � y means that
a personweaklyprefers outcomex to outcomey; that is, outcomex is deemed to be as good as outcome
y. The weak preferencerelation is commonly expected to satisfy the following two properties for the
preferences to be consideredrational:

Comparability: ∀x, y ∈ X, x � y ∨ y � x (1)

Transitivity: ∀x, y, z ∈ X, x � y ∧ y � z =⇒ x � z (2)

Weak preference is therefore atotal preorder(or weak order) relation over the set of outcomesX . It is
natural to think of weak preference as a combination of strict preference relation≻ and indifference relation
∼. The statementx ≻ y means thatx is strictly preferred toy; x ∼ y means thatx is exactly as good asy.
Formally, for any two elementsx, y ∈ X

x ∼ y ⇐⇒ x � y ∧ y � x, (3)

x ≻ y ⇐⇒ y 6� x. (4)
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It follows that strict preference is a strict order (≻ is asymmetric and transitive), and indifference is an
equivalence relation (∼ is reflexive, symmetric, and transitive).

Weak preferences can be represented compactly by a numerical function. An ordinal value function
v : X 7→ R representsor agrees withthe ordering� when for allx, y ∈ X

v(x) ≥ v(y) ⇐⇒ x � y. (5)

A representation theoremgives necessary and sufficient conditions under which some qualitative rela-
tion can be represented by a numerical ranking, orscale. In case of weak preferences, an agreeing ordinal
value function can always be constructed if the outcome setX is finite or countably large. IfX is uncount-
ably large, then an agreeing ordinal value function exists if and only if X has a countable, order dense
subset with respect to�.1

Ordinal value functions are unique up tostrictly increasing transformations. Such functions are called
ordinal scalefunctions. They contain only preference ranking information; thus, it would be meaningless
to compare any linear combination of ordinal scale values (such as the average or difference of outcome
values).

2.2 Preferences under uncertainty

In many settings, the consequences of an action are uncertain. Modern utility theory is based upon the
fundamental work of von Neumann and Morgenstern [1947]. In this theory, uncertainty is quantified
probabilistically, and a rational decision maker is capable of expressing preferences betweenlotteries, or
probability distributions over afiniteset of outcomes.

A simple lottery, where outcomexi is realized with probabilitypi, is conventionally denoted as

l = 〈p1, x1; p2, x2; . . . ; pn, xn〉. (6)

It is common to omit outcomes with zero probabilities in the lottery notation. When the lottery contains
only two outcomes with positive probabilities, it will sometimes be abbreviated as〈p, x; 1 − p, x′〉 ≡
〈x, p, x′〉.

A more general type of lottery is acompoundlottery, where the outcomes themselves are simple lotter-
ies: l′ = 〈p1, l

′
1; p2, l

′
2; . . . ; pn, l′k〉. Any compound lottery can bereducedto an equivalent simple lottery

where the final outcomes are realized with same probabilities. Using the vector notation, the reduced lot-
tery obtained froml′ is simplyp1l

′
1 + p2l

′
2 + . . . + pnl′k. An important assumption about preferences over

lotteries is that the decision maker views any compound lottery and its reduction as equivalent; that is, only
the ultimate probabilities of outcomes matter. It therefore suffices to consider preferences over the set of
simple lotteries.

As in the case of certainty, the rational decision maker is assumed to have a complete and transitive
preference ranking� over the set of simple lotteriesL. Thecontinuity, or Archimedean, axiom states that
no alternative is infinitely better (or worse) than others:

Continuity: ∀l1, l2, l3 ∈ L, (7)

l1 ≻ l2 ≻ l3 =⇒ 〈l1, p, l3〉 ≻ l2 ≻ 〈l1, q, l3〉,

for somep, q ∈ (0, 1).

The continuity axiom is required for existence of autility functionu : L 7→ R that represents the preference
relation� on simple lotteries. An additionalindependenceaxiom is necessary to impose a very convenient

1Y ⊆ X is order densewith respect to� if ∀x, z ∈ X such thatx � z, there existsy ∈ Y such thatx � y � z. For example,
rational numbers form a countable, order dense subset of real numbers with respect to the order≥.
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linear structure on the utility functionu(·):

Independence: ∀l1, l2, l3 ∈ L, andp ∈ (0, 1), (8)

l1 ≻ l2 =⇒ 〈l1, p, l3〉 ≻ 〈l2, p, l3〉.

Independence axiom requires that preferences overl1 and l2 carry over to compound lotteries involving
some other lotteryl3.

The most important result that follows is theexpected utilityrepresentation theorem. It states that if
and only if the weak preference relation on simple lotteriesis (1) complete, (2) transitive, (3) satisfies
continuity axiom, and (4) satisfies independence axiom, then there exists anexpectedor linear utility
functionu : L 7→ R which represents�. A utility function u(·) has the following properties:

(1) u(l) ≥ u(l′) ⇐⇒ l � l′, (9)

(2) u(〈l, p, l′〉) = pu(l) + (1 − p)u(l′), ∀l, l′ ∈ L, andp ∈ [0, 1].

We can identify any outcomex ∈ X with a degenerate lotterylx = 〈1, x; 0, . . .〉, where outcomex
occurs with certainty. This allows us to extend the preference relation� on simple lotteries to outcomes.
The utility of outcomex is then the same as that of the corresponding degenerate lottery: u(x) = u(lx).
Using induction and linearity of the utility functionu(·), it can be shown that the utility of any simple
lottery l = 〈p1, x1; p2, x2; . . . ; pn, xn〉 is the expected value of its outcomes.

u(l) = u(〈p1, x1; p2, x2; . . . ; pn, xn〉) =

n
∑

i=1

piu(xi). (10)

This key result allows us to represent preferences over an infinite set of simple lotteries by a utility
function over a finite set of outcomes.

2.3 Multiattribute outcomes

In practice, the set of outcomesX is often endowed with multidimensional structure. For example, each
alternative inA can be evaluated on several criteria, orattributes. Under certainty, actiona ∈ A maps to
a point in amultiattributespace; under uncertainty, it maps to a distribution over points in that space. The
goal ofmultiattribute utility theory(MAUT) is to investigate numerical representations that reflect structure
in user preferences over multiattribute spaces. [Keeney and Raiffa, 1976] remains the main reference for
MAUT.

Assume a set of attributesX1, X2, . . . , Xn. Each attribute is either a finite or infinite set of possible
levels, or values (attributes can be also thought of as variables; for ease of notation we useXi to refer to its
domain as well). The set of all outcomesX = X1 × · · · × Xn is the Cartesian product of attribute levels.
Given an index setI ⊆ {1, . . . , n}, we defineXI = ×i∈IXi to be the set ofpartial outcomesrestricted to
attributes inI, andxI to be the same restriction of a specific outcomex. IC denotesI ’s complement.

If preferences over multiattribute outcomes exhibit sufficient structure, a preference relation can be
modeled more concisely, and utility functions can be decomposed intosubutility functions, defined over
subsets of attributes. The simplestindependence conditionis calledpreferential independence. Attributes
in I are preferentially independent of the remaining attributes if

(xI ,y) � (x′
I ,y) for somey ∈ XIC (11)

=⇒ (xI ,y
′) � (x′

I ,y
′) for all y′ ∈ XIC .
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That is, as long as attributes not inI are fixed to some levely, the preferences overXI do not depend on
the setting of remaining attributes. Therefore, a statement xI � x′

I , ceteris paribus(all else being equal),
is a concise way of stating(xI ,y) � (x′

I ,y) for all y ∈ XIC .
Ceteris paribuspreferential statements provide a natural language for expressing multiattribute prefer-

ences. In AI,ceteris paribusassumptions are central to some of thequalitative decision theories[Doyle
and Thomason, 1999]. Thelogic of relative desire, introduced by Doyle et al. [1991], as well as later work
by Doyle and Wellman [1994] interpret planning goals as qualitative preference statements over models
using all-else-being-equal semantics. In a more recent article, McGeachie and Doyle [2004] provide algo-
rithms for computingordinal value functions based on qualitativeceteris paribuspreference statements.

One issue not addressed byceteris paribuslogic theories was compact and efficientrepresentationof
preferential independence statements. ACP-net, introduced by Boutilier et al. [1999], is a popular graph-
ical model that exploits conditional preferential independence among attributes. To create the structure of
a CP-net, for each attributeXi, a user must indicate which other attributes —parentsof Xi — impact
the preferences over values of attributeXi. Then, for each possible instantiation of the parents ofXi, the
user provides a qualitative preference relation over the values ofXi, all else being equal. Given a CP-net,
the ceteris paribus semantics induces apartial order over full outcomes. Besides providing a compact and
natural representation of preferences, a CP-netN can be used to perform preferential comparison between
full outcomes (“DoesN entailx ≻ x′?”), partial outcome optimization (“What is the best outcomex given
N?”), and outcome ordering (“Is there some ranking in whichx ≻ x′?”).

While partial outcome optimization and outcome ordering are computationally tractable (polynomial in
the size of the network), dominance testing is more complicated. In general, answering dominance queries
is PSPACE-complete; however, polynomial algorithms existfor tree and polytree structured networks. An-
other complication is cyclicity: while quite natural in certain settings, cyclical networks are not guaranteed
to have a satisfiable preference ranking. Because satisfiability testing can be hard, most research on CP-
nets (including complexity results mentioned before) is limited to acyclic networks. Finally, we should
note that introduction of ceteris paribusindifferencestatements can also lead to unsatisfiable networks.

CP-nets have been extended to deal with hard [Boutilier et al., 2004a] and soft [Prestwich et al., 2005]
constraints. Another interesting generalization is the TCP-net, which adds conditional importance relations
among variables [Brafman and Domshlak, 2002].

The idea of preferential independence extends to preferences over lotteries, leading to the notion of
utility independence. Let L be the set of all simple lotteries onX, andLI — the set of all lotteries onXI .
For l ∈ L, lI is the marginal ofl onXI . User preferences forXI areutility independentof XIC if prefer-
ences over marginal lotteries overXI , when the levels ofXIC are fixed toy, do not depend on that fixed
levely. A graphicalUCP-netmodel [Boutilier et al., 2001] that exploits conditional utility independence
among attributes is the quantitative analogue of CP-nets.

Preference independence and utility independence always involve a relationship between two comple-
mentary sets of attributes. Independencies between arbitrary subsets of attributes will be discussed later,
when describing conditions for additive utility representation. Finally, we should mention the notion of
Pareto-optimal alternatives when discussing multiattribute outcomes. Consider a set of multiattribute alter-
nativesA, such that each attribute is preferentially independent ofthe remaining attributes. Without loss of
generality, we can assume that preferences are monotonically increasing with the value of each attribute.
Then, alternativex dominatesx′ if

xi � x′
i for i = 1, . . . , n with xi ≻ x′

i for at least onei. (12)

ThePareto optimal set(also known asefficient setor admissible set) is the set of all nondominated alterna-

5



tives inA. It is common to restrict the set alternatives to the Pareto optimal set, because a Pareto-dominated
alternative cannot be optimal.

2.4 Additive utility representation

When utility or value functions have additive representations, many techniques of preference elicitation are
similar in both certain and uncertain settings. The term “utility function” will be be used as a synonym for
a value function, unless explicitly noted otherwise.

Since the number of outcomes is exponential in the number of attributes, specifying the utility value for
each outcome is infeasible in many practical applications.However,u(·) can be expressed concisely if it
exhibits sufficient structure.Additive independence[Keeney and Raiffa, 1976] is one structural assumption
commonly used in practice. Under certainty, additive independence requires thatall subsets of attributes
be mutually preferentially independent of their compliments. Under uncertainty, the decision maker has
to be indifferent among lotteries that have same marginals on each attribute. When additive independence
holds,u(·) can be written as a sum of single-attributesubutility functions:

u(x) =

n
∑

i=1

ui(xi) =

n
∑

i=1

wivi(xi). (13)

This simple factorization exploits subutility functionsui(xi) = wivi(xi), which can be written as prod-
uct of local value functionsvi andscaling factors, or weights, wi. The two representations — the sum of
attribute subutility functions and the sum of weighted local value functions — are equivalent; the weighted
representation is commonly used under the assumption that weights form a simplex (i.e.,

∑

i wi = 1,
wi ≥ 0) and local value functions are normalized to be in the range [0;1].

If attributesxi are numerical and a value function can be written as

u(x) =
n
∑

i=1

λi xi, (14)

then it islinear. Such functions are quite commonly assumed in operations research, cost-benefit analysis,
and economics. In addition to conditions required for existence of additive value functions, there is an
additional property ofconstant relative tradeoffbetween every pair of attributes that has to be satisfied.
A pair of attributesi andj has a constant relative tradeoffρij if the decision maker is always indifferent
between some outcomex and an outcome obtained by increasingxi and decreasingxj in the ratioρij : 1.
Linear functions are therefore measured on a more restrictive ratio scale: they are unique up to scaling by
a positive constant.

While additive models are by far the most commonly used in practice,generalized additive indepen-
dence(GAI) models have recently gained attention because of their additional flexibility (see, e.g., [Bac-
chus and Grove, 1995, Boutilier et al., 2001, 2003b, Gonzales and Perny, 2004, Boutilier et al., 2005,
Braziunas and Boutilier, 2005]). The conditions under which a GAI model provides an accurate represen-
tation of a utility function were defined by Fishburn [1967a,1970], who introduced the model.2 GAI is a
generalization of the additive model, where independence holds among certainsubsetsof attributes, rather
than individual attributes.

2Fishburn used the terminterdependent value additivity; Bacchus and Grove [1995] dubbed the same concept GAI, whichseems
to be more commonly used in the AI literature.
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Let {I1, . . . , Im} be a collection of nonempty subsets of{1, . . . , n}. Also, recall thatlI denotes the
marginal of the lotteryl on the attributes inI. The sets of attributes indexed byI1, . . . , Im are(generalized)
additively independentif and only if

[(lI1 , . . . , lIm
) = (l′I1 , . . . , l

′
Im

)] =⇒ l ∼ l′, (15)

that is, if and only if the decision maker is indifferent between two lotteries whenever their marginal
distributions onXI1 , . . . ,XIm

are the same. When generalized additive independence holds, the utility of
a multiattribute outcome can be written as a sum of subutilities involving GAI subsets of attributes:

u(x) =
m
∑

i=1

ui(xIi
). (16)

3 Main aspects of preference elicitation

The increased interest in automated decision support toolsin recent years has brought the problem of
automated preference elicitationto the forefront of research in decision analysis [Dyer, 1972, White et al.,
1984, Salo and Hämäläinen, 2001] and AI [Chajewska et al., 1998, 2000, Boutilier, 2002]. The goal
of automated preference elicitation is to devise algorithmic techniques that will guide a user through an
appropriate sequence of queries or interactions and determine enough preference information to make a
good or optimal decision.

In this section, we concentrate on a few key aspects of the preference elicitation problem. The previous
section dealt with various complete representations of preference information. Here, we are interested in
the actual process of acquiring such information as well as making decisions with partially elicited utility
functions. Therefore, we address issues of how to representuncertainty over possible utility functions, how
to make decisions without full knowledge of user preferences, and how to intelligently guide the elicitation
process by taking into account the cost of interaction and potential improvement of decision quality.

3.1 “Classical” preference elicitation

Preference (or utility) elicitationis a process of assessing preferences or, more specifically,utility func-
tions. Utility elicitation literature is as old as utility theory itself; first attempts to describe procedures for
evaluating utility functions date back to the 1950s. In the “classical” setting, adecision analyst’stask is
to help elicit adecision maker’spreferences. Once those preferences are extracted, the decision analyst
calculates an optimal course of action according to the utility theory, andrecommendsit to the decision
maker [Keeney and Raiffa, 1976, Howard and Matheson, 1984, French, 1986].

There are many techniques for evaluating utility functions, and the whole process of elicitation is “as
much of an art as it is a science” [Keeney and Raiffa, 1976]. A classical approach, involving an interaction
between the decision analyst and the decision maker, usually consists of five steps [Keeney and Raiffa,
1976, Farquhar, 1984]. During thepreparation for assessment, the DM is acquainted with the decision
problem, possible outcomes or attributes, and various aspects of the elicitation procedure. The next stage is
identification of relevant qualitative characteristicsof DM’s preferences. This could include determining
the properties of the utility function (such as continuity or monotonicity in case of numerical attributes),
best and worst outcomes or attribute levels, and independence relations among attributes for structured
outcome spaces. The central part of the procedure isspecification of quantitative restrictionsandselection
of a utility function. Here, the decision analyst asks various queries, some of which are described below, in
an attempt to model DM’s preferences by acompletelyspecified utility function. Most of the approaches
described in this survey depart from the classical form of elicitation because of the complexity of this
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task. The last step usually involveschecks for consistencyandsensitivity analysis. When inconsistencies
are detected, the DM is asked to revise her preferences. The goal of sensitivity analysis is to check the
sensitivity of the output (which, in most cases, is the decision recommended by the decision analyst) to the
inputs — the utility model and DM’s responses.

3.1.1 Query types

The nature of queries is an integral part of the preference elicitation problem. Some queries are easy
to answer, but do not provide much information; and, vice versa, informative queries are often costly.
Another tradeoff to consider is the complexity of selectingthe right query versus its potential usefulness.
Such aspects of preference elicitation depend onquery types.

We survey some queries that are commonly used in decision analysis and describe their main charac-
teristics. “Global” queries are applicable to situations where either the set of outcomes does not have any
structure, or, in case of multiattribute problems, that structure is ignored and only full, orglobal, outcomes
are considered. In most multiattribute problems, people can meaningfully compare outcomes with no more
than five or six attributes [Green and Srinivasan, 1978]. Therefore, most of the global queries have “local”
counterparts that apply to a subset of attributes.

We assume that preferences over the set of outcomesX can be expressed by a utility functionu(·),
and consider queries that help assess this function. Utility functions are unique up to positive affine trans-
formations; therefore, ifu(·) represents the preference relation�, then so doesu′(·) = au(·) + b, with
a ∈ R

+, b ∈ R. Without loss of generality, we can therefore normalize anyutility function to lie between
0 and 1.

Order comparison Order queriesare very simple queries that ask the user to compare a pair of alterna-
tivesx andy; the user might preferx to y, y to x, or be indifferent between the two. Such queries are very
common in practice (they are central in ISMAUT and conjoint analysis, for example) and usually require
little cognitive effort from the user. Unfortunately, often they are not too informative.

More complicated comparison queries ask the user to pick themost preferred alternative from the set
of k alternatives. This rather easy task actually providesk− 1 preference relations (the selected alternative
is preferred to all remaining choices), and is widely used inchoice-based conjoint analysis. At the most
extreme, atotal rankingquery expects the user to rank all specified alternatives; answering such a query
would provide preference information relating every pair of alternatives.

Most other utility elicitation queries involve degeneratelotteries, orgambles, with only two outcomes.
As before, we use abbreviated notation〈x, p, x′〉 for a lottery wherex occurs with probabilityp andx′

occurs with probability 1-p. We consider a general query expression〈x, p, x′〉 ≷ y, where everything
except one item is specified, and the user is asked to provide the value of the item that would make the
expression true. In the expression,x, x′, y are outcomes inX , p is a probability, and≷ is either� or
≺3. The following terminology and classification follows [Farquhar, 1984], who describes queries for all
possible combinations of known and unknown quantities in the query expression, as well as more general
queries involving two gambles.

Probability equivalence Probability equivalence queries elicit an indifference probability p for which
〈x, p, x′〉 ∼ y. In a standard gamble case, whenx = x⊤ andx′ = x⊥, the query simply asks to specify the
utility of y, and is therefore sometimes called adirect utility query. While such queries have been used in
research papers [Keeney and Raiffa, 1976, Gonzales and Perny, 2004], it is unlikely that users can provide

3Or, more generally, one of the three preference relations≻,∼ and≺.
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exact utility values for outcomes in real-world situations. One possible generalization is to ask forbounds
on the utility value; these bounds can then be narrowed by asking binary comparison queries described
below [Boutilier et al., 2003b].

Preference comparison In a preference comparison between a gamble〈x, p, x′〉 and a sure outcomey,
a user is asked to specify a relation (� or ≺) that holds between the two. When the gamble is a standard
gamble,u(〈x⊤, p, x⊥〉) = p, and the query becomes equivalent to “Isu(y) ≥ p?” with possible{yes, no}
responses.4 Such query is called astandard gamble comparison query.

Standard gamble comparison queries are common in classicaldecision analysis literature [Keeney and
Raiffa, 1976]. More recently, such queries have been used byChajewska and Koller [2000], Boutilier
[2002], Wang and Boutilier [2003], Boutilier et al. [2003b,2005], Braziunas and Boutilier [2005], and
others.

Implicit queries Until now, we assumed that a query is an explicit question posed by the decision support
system, and a response is a user’s reaction to the query. However, queries and responses can be much more
general. The system could pose “implicit” queries by changing the user environment (such as options
available on the web page), and observing the user’s behavior (links followed, time spent on the page, etc.).
Or, the user can be asked to view a fragment of some action policy, and asked to critique the actions. A
related theoretical framework isinverse reinforcement learning[Ng and Russell, 2000, Chajewska et al.,
2001]. The goal is to recover the reward function (preferences) of an agent by observing execution of an
optimal policy.

The concept ofrevealed preferencein economics [Mas-Colell et al., 1995] is also related to thetopic of
implicit queries. Here, the emphasis is on descriptive, rather than prescriptive, aspects of human decision
making. Observable choices that people make faced with an economic decision provide the primary basis
for modeling their behavior. A preference relation does notexista priori, but could bederived(or revealed)
given observed choices that follow certain axioms of rationality.

3.1.2 Multiattribute elicitation

All the techniques described above could be also employed tosimplify utility elicitation of structured
outcomes. To illustrate the main concepts, we consider the case of eliciting an additive utility function

u(x) =

n
∑

i=1

ui(xi) =

n
∑

i=1

wivi(xi), (17)

whereui(xi) are subutility functions that can be written as a product oflocal value functionsvi andscaling
factors, or weights, wi.

The assumed utility independence among attributes allows elicitation to proceedlocally: specifically,
eachvi(·) can be elicited independently of other attribute values using any of the techniques described
above. Since attributes are preferentially independent, each attribute’s best and worst levels (we shall
call themanchor levels) can be determined separately. Letx⊤

i andx⊥
i denote the best and worst levels,

respectively, of attributei. Local value functionsvi(·) can be determined by locally measuring values of
attribute levels with respect to the two anchor levels. Whatremains is to bring all the local value scales
to the common global utility scale. Essentially, we need to find the true utility of all “anchor” outcomes
x⊤

i andx⊥
i relative to some default outcomex0 (it is customary to choose the worst outcome as default

outcome, and set its utility to 0). Then, elicitingu(x⊤
i ,x0

iC ) = ui(x
⊤
i ) andu(x⊥

i ,x0
iC ) = ui(x

⊥
i ) for

4We should note that despite the equivalence, comparing an outcomey and a standard lottery〈x, p, x′〉 might be psychologically
easier than providing a response regarding the utility value ofy.
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all attributes would ensure consistent scaling of subutility functions. Because additive utility functions are
unique up to positive affine transformations, it is usually assumed that both the global utility functions
and local value functions are scaled to lie between 0 and 1; the weights are also normalized such that
wi ≥ 0 and

∑

wi = 1. In a normalized additive utility function, scaling factorswi, which reflect attribute
contributions to the overall utility function, are simply equal toui(x

⊤
i ).

The scaling factors can be determined by asking utility queries involving full outcome lotteries. The
simplest way to elicitwi is to find the utility of(x⊤

i ,x⊥
−i) for all i:

wi = u(x⊤
i ,x⊥

iC ). (18)

More generally, we needn − 1 independent linear equations involving the unknown scaling constants.
Such equations could be chosen in a manner that reduces the cognitive burden of the DM (for example, by
carefully choosing queries that do not involve extreme attribute values).

More general multiattribute utility functions, such as multiplicative or GAI, can also be elicited using
ideas of local value function elicitation and global scaling [Fishburn, 1967b, Keeney and Raiffa, 1976,
Fishburn, 1977, Braziunas and Boutilier, 2005].

3.1.3 Problems with the classical paradigm

Complete preference information is often unattainable in practice. In many realistic domains where the
outcome space is large, it is unreasonable to expect a user toprovide preference information about every
outcome. In multiattribute settings with more than, say, ten attributes, complete preference elicitation
becomes virtually impossible, as the number of alternatives is exponential in the number of attributes.

Elicitation of quantitative utilities brings additional difficulties. Queries involving numbers and proba-
bilities are cognitively hard to answer; most users are not experts and therefore require preliminary train-
ing. Real case studies often provide evidence of inconsistent responses, errors, and various forms of biases.
Eliciting preferences might be costly, too; costs can be cognitive (hours of human effort in answering ques-
tionnaires), computational (calculating a value of certain alternative might involve solving complicated
optimization problems or running simulations), financial (hiring a team of experts to analyze potential
business strategies), and others.

Furthermore, from the AI perspective, preference elicitation presents a “bottleneck” for designing auto-
mated decision aids ranging from critical financial, medical, and logistics domains to low-stakes processes,
such as product recommendation or automated software configuration. For making optimal decisions, we
need to know both the decision dynamics and outcome utilities. In many situations, the dynamics is known
(elicitation and representation of complex probability models is a well-researched area of AI). However,
user preferences are often unknown, and, furthermore, theyvary considerably from user to user (while
the system dynamics is often fixed for all users). Designing effective preference elicitation techniques is
therefore an important problem facing AI.

When costs of elicitation are taken in to account, it becomesclear that decisions might have to be made
with partial preference information, if elicitation costsstart to exceed potential improvement of decisions.
Viewing utility elicitation as an integral part of the decision process is a promising paradigm for tackling
the preference elicitation problem.

3.2 Decisions with partial preference information

If the utility function is not fully known and further elicitation not possible, what criteria should be used
for making good decisions with available information? It turns out that criteria proposed for dealing with
state uncertainty in classical decision theory (such as maximum expected utility, minimax regret, maximin)
can be applied to situations where utility functions themselves are uncertain. The analogy extends to
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both common representations of utility function uncertainty: Bayesian, where we can keep track of the
probability distribution over possible utility functions, and strict uncertainty, defined by the set offeasible
utility functions.

3.2.1 Strict uncertainty

“UCP-Networks: A Directed Graphical Representation of Conditional Utilities” [Boutilier et al., 2001]
“Preference Ratios in Multiattribute Evaluation (PRIME)”[Salo and Hämäläinen, 2001]
“Preference programming” [Salo and Hämäläinen, 2004]
“Cooperative Negotiation in Autonomic Systems using Incremental Utility Elicitation” [Boutilier et al., 2003a]
”Incremental Utility Elicitation with the Minimax Regret Decision Criterion” [Wang and Boutilier, 2003]

Under strict uncertainty, knowledge about a user’s utilityfunction is characterized by the feasible utility
setU . This set is updated (reduced) when relevant preference information is received during an elicitation
process. The following is a non-exhaustive list of decisioncriteria that could be used for making decisions
with partial utility information under strict uncertainty. The set of outcomes isX , and the goal is to choose
the best alternativex∗ when the set of feasible utility functions isU .

Maximin return Without distributional information about the set of possible utility functionsU , it might
seem reasonable to select an outcome whose worst-case return is highest:

x∗ = argmax
x∈X

min
u∈U

u(x). (19)

Maximindecision is sometimes calledrobustbecause it provides anex postsecurity guarantee. Maximin
was proposed by Wald [1950], and mentioned by Salo and Hämäläinen [2004] for the case of uncertain
utilities.

Hurwicz’s optimism-pessimism index Maximin return is a pessimistic criterion, because the decision
maker prepares for the worst realization of the utility function. Maximax returncriterion is the optimistic
counterpart to maximin. Supposing that maximin and maximaxare too extreme, Hurwitz proposed to use
a weighted combination of the minimum and maximum possible values [French, 1986]. For the case of
strict uncertainty over utility functions, this criterionwould choose

x∗ = argmax
x∈X

[

α min
u∈U

u(x) + (1 − α)max
u∈U

u(x)

]

, (20)

whereα is theoptimism-pessimism indexof the decision maker. Hurwicz’s optimism-pessimism criterion
generalizes minimax and maximax, as well as thecentral valuescriterion favored by Salo and Hämäläinen
[2001]. Central values rule prescribes an outcome whose mid-point of the feasible utility interval is largest,
which is equivalent to setting the optimism-pessimism index α to 0.5.

Minimax regret Minimax regret criterion was first described by Savage [1951] in the context of uncer-
tainty over world states, and advocated by Boutilier et al. [2001] and Salo and Hämäläinen [2001] for robust
decision making with uncertain utility functions. The mainidea is to compare decisions foreachstate of
uncertainty. Themaximum regretof choosingx is MR(x, U) = maxu maxx′ [u(x′) − u(x)]. Minimax
regret optimal decision minimizes the worst-case loss withrespect to possible realizations of the utility
function:

x∗ = arg min
x∈X

MR(x, U) = arg min
x∈X

max
u∈U

max
x′∈X

[u(x′) − u(x)]. (21)
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Various applications of decision making with minimax regret criterion have been researched by Boutilier
et al. [2001, 2003a,b], Wang and Boutilier [2003], Boutilier et al. [2004b, 2005], Patrascu et al. [2005].

The largest drawback of this criterion is the failure to satisfy theprinciple of independence of irrelevant
alternatives. According to this principle, the ranking between two alternatives should be independent of
other available alternatives (for example, the violation of this principle could result in a situation where
x � y if option z is available, andy � x otherwise). We should note, however, that the principle of
independence of irrelevant alternatives is by no means universally accepted as a prerequisite for rational
decision making.

Principle of Insufficient Reason This criterion dates back to Pierre Laplace and Jacob Bernoulli, who
maintained that complete lack of knowledge about the likelihood of world states should be equivalent to
all states having equal probability. Therefore, followingthis principle of insufficient reason, an optimal
decision maximizes the mean value of possible outcomes:

x∗ = argmax
x∈X

Eπ
u∈U [u(x)], (22)

where theπ is the uniform distribution overU . This criterion is mentioned by Salo and Hämäläinen
[2001] ascentral weightsdecision rule, and is implicitly employed by Iyengar et al. [2001], Ghosh and
Kalagnanam [2003], Toubia et al. [2004], where uncertaintyover additive utility functions is characterized
by linear constraints on attribute weights. The “center” ofthe weight polytope could be its actual mass
center (i.e., the mean under uniform distribution), or someapproximation thereof — a point that minimizes
maximal distance to constraint hyperplanes, the center of abounding ellipsoid, or the average of uniformly
sampled points from inside the region.

Acceptability index Finally, there are methods that recommend choosing an alternative based on the set
size of supporting utility functions. Lahdelma et al. [1998] introducestochastic multiobjective acceptabil-
ity analysis(SMAA), which applies to settings where uncertainty over additive utility functions can be
described by linear constraints on then− 1 dimensional weight simplexW . Each alternative is associated
with a region ofW in which it is optimal. Alternatives are ranked according toacceptability index, which
is the normalized volume of the weight region in which it is optimal. An alternative with the highest accept-
ability index is in some sense most likely to be optimal. Likethe minimax regret criterion, the acceptability
index criterion does not satisfy the principle of independence of irrelevant alternatives.

Various criteria for decision making under strict uncertainty can be grouped into categories based on
their general properties. Maximax, maximin, and central values (i.e., optimism-pessimism index) are based
on extreme possible values of outcomes. Center-based criteria pick a “representative” point in the space
of feasible utilities. Finally, minimax regret is qualitatively different from the other criteria because it
considers pairwise value differences between outcomes.

Unfortunately, different decision rules might prescribe different alternatives. The choice of a decision
rule under strict uncertainty should be carefully considered by the decision maker before the elicitation
process. French [1986] provides an extensive discussion and critique of various decision criteria under
strict uncertainty.
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3.2.2 Bayesian uncertainty

“Adaptive Utility” [Cyert and de Groot, 1979]
“Decision Making with an Uncertain Utility Function” [de Groot, 1983].
”Utilities as Random Variables: Density Estimation and Structure Discovery” [Chajewska and Koller, 2000]
”Making Rational Decisions Using Adaptive Utility Elicitation” [Chajewska et al., 2000]
”A POMDP Formulation of Preference Elicitation Problems” [Boutilier, 2002]
“On the Foundations ofExpectedExpected Utility” [Boutilier, 2003]
“Local Utility Elicitation in GAI Models” [Braziunas and Boutilier, 2005]

A true Bayesian would likely reject the very notion of strictuncertainty. An optimal decision is simply
the one that maximizes expected value, where expectation istaken with respect to a prior probability
distributionπ over the set of feasible utilitiesU :5

x∗ = arg max
x∈X

Eπ
u∈U [u(x)] = arg max

x∈X
EU(x, π), (23)

whereEU(x, π) is the expected utility of outcomex whenπ is the probability distribution over utilities.
In the case of additional uncertainty over world states, thegoal is to maximizeexpectedexpected utility
[Boutilier, 2003].

While most recent work on decision making using distributions over utility functions has been done
within the AI community [Chajewska and Koller, 2000, Chajewska et al., 2000, Boutilier, 2002, Braziunas
and Boutilier, 2005], the origins of this approach can be traced back to much earlier research in game theory
and decision theory. Cyert and de Groot [1979] and de Groot [1983] propose the concept ofadaptive
utility, where a decision maker does not fully know her own utility function until a decision is made.
Uncertainty is quantified as a probability distribution over utility function parameters. The distribution is
updated by comparing expected utility of an outcome versus its actual utility, which becomes known after
the decision is made. Weber [1987] also discusses using expectations over utility functions as a possible
criterion for decision making with incomplete preference information. In a related context, probabilistic
modeling of possible payoff functions provides the foundation to the well-established field of Bayesian
games [Harsanyi, 1967, 1968].

Boutilier [2003] investigates the conditions under which it is reasonable to model uncertainty over
functions measured on the interval scale. By appealing to the foundational axioms of utility theory, it can
be shown that the functions are required to beextremum equivalent, i.e., they have to share the same best
and worst outcomes.

An important issue in the Bayesian approach to modeling uncertainty over utility functions is the choice
of prior probability distributions. Ideally, the probability model would be closed under updates (otherwise,
it needs to be refit after each response) and flexible enough tomodel arbitrary prior beliefs. Mixtures
of Gaussians [Chajewska et al., 2000], mixtures of truncated Gaussians [Boutilier, 2002], mixtures of
uniforms [Boutilier, 2002, Wang and Boutilier, 2003, Braziunas and Boutilier, 2005], and Beta distributions
Abbas [2004] are among possibilities proposed in the literature. Priors can also be learned from data —
Chajewska et al. [1998] describe a way to cluster utility functions using a database of utilities from a
medical domain.

3.3 Query selection criteria

A central issue in preference elicitation is the problem of which query to ask at each stage of the process.
The value of a query is generally determined by combining thevalues of possible situations resulting from

5With a prior over utilities, the same decision also minimizes expected regret.
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user responses. Similar to decision making with incompleteinformation, query selection is driven by the
ultimate goals of the decision support system. Query selection criteria include fastest reduction of minimax
regret or uncertainty, or achieving optimal tradeoff between elicitation costs and predicted improvement in
decision quality.

3.3.1 Max regret reduction

”Incremental Utility Elicitation with the Minimax Regret Decision Criterion” [Wang and Boutilier, 2003]
“Cooperative Negotiation in Autonomic Systems using Incremental Utility Elicitation” [Boutilier et al., 2003a]
“New Approaches to Optimization and Utility Elicitation inAutonomic Computing” [Patrascu et al., 2005]
”Eliciting Bid Taker Non-price Preferences in (Combinatorial) Auctions” [Boutilier et al., 2004b]
”Constraint-based Optimization with the Minimax DecisionCriterion” [Boutilier et al., 2003b]
“Regret-based Utility Elicitation in Constraint-based Decision Problems” [Boutilier et al., 2005]

The minimax regret decision criterion provides bounds on the quality of the decision made under strict
uncertainty. When the potential regret associated with each decision is too high, more utility information
needs to be elicited. A decision support system can query theuser until the minimax regret reaches some
acceptable level, elicitation costs become too high, or some other termination criterion is met.

Each possible response to a utility query results in a new decision situation with a new level of minimax
regret (the level of regret cannot increase with more information). The problem is to estimate the value
of a query based on the value of possible responses. For example, one could select the query with the
best worst-case response, or the query with the maximum average or expected improvement [Wang and
Boutilier, 2003].

Minimax regret reduction queries are also used in the autonomic computing scenario [Boutilier et al.,
2003a, Patrascu et al., 2005], eliciting values of non-price features in combinatorial auctions [Boutilier
et al., 2004b], and optimizing constrained configurations [Boutilier et al., 2003b, 2005]. A more detailed
description of these methods is postponed till Section 4.6.1.

3.3.2 Uncertainty reduction

There is a variety of methods from diverse research areas, such as conjoint analysis and ISMAUT (see Sec-
tions 4.3 and 4.4), whose central idea is to choose queries that reduce the uncertainty over utility functions
as much as possible. The set of possible utility functions iscommonly represented as a convex polytope
in the space of utility function parameters. Each query bisects the polytope by adding a linear constraint.
Since the responses are not known beforehand, various heuristics are used to choose the next query. Such
heuristics consider the size parity of volumes [Iyengar et al., 2001], as well as their shape [Ghosh and
Kalagnanam, 2003, Toubia et al., 2004].

Abbas [2004] proposes an algorithm for query selection in situations where uncertainty over unidimen-
sional utility functions is quantified probabilistically.At each stage, a myopically optimal query provides
the largest reduction in the entropy of the joint distribution over utility values. Holloway and White [2003]
consider sequentially optimal querying policies for a subclass of problems with additive utility functions
and small sets of alternatives. The process is modeled as a special POMDP (see Section 4.3 below for a
more detailed description).

While such methods strive to minimize the number of queries,they fail to consider the tradeoff between
elicitation costs and improvement in decision quality. This is the topic of the next section.
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3.3.3 Expected value of information

If uncertainty over utilities is quantified probabilistically, the value of a query can be computed by consid-
ering the values of updated belief states (one for each possible response), and weighting those values by the
probability of corresponding responses. If a sequence of queries can be asked, finding the best elicitation
policy is a sequential decision process, providing an optimal tradeoff between query costs (the burden of
elicitation) and potentially better decisions due to additional information. However, such a policy is very
difficult to compute; therefore, we first describe a myopic approach to choosing the next query.

Myopic EVOI Because of computational complexity of determining full value of a query, it is common
to use myopicexpected value of information(EVOI) to determine appropriate queries [Chajewska et al.,
2000]. To reduce uncertainty about utility functions, the decision support system can ask questions about
the user’s preferences. We will assume a finite set of available queriesQ = {q1, . . . , qn}, and, for each
queryqi — a set of possible userresponsesRi = {ri

1, . . . , r
i
m}. Responses to queries depend on the

true user utility functionu, but might be noisy. A general model that fits many realistic scenarios is a
probabilisticresponse modelPr(ri

j |qi, u), providing the probability of responseri
j to the queryqi when

the utility function isu. Pr(ri
j |qi, π) will denote the probability of responseri

j with respect to the density
π over utility functions:

Pr(ri
j |qi, π) =

∫

u∈U

Pr(ri
j |qi, u)π(u)du. (24)

Elicitation of preferences takes time, imposes cognitive burden on users, and might involve considerable
computational and financial expense. Such factors can be modeled by assigning each queryqi aquery cost
ci.6 In a Bayesian formulation of the elicitation process, expected gains in decision quality should outweigh
elicitation costs.

Let’s recall thatEU(x, π) is the expected utility of outcomex whenπ is the probability distribution
over utilities (see Eq. 23). LetMEU(π) be themaximum expected utilityof belief stateπ:

MEU(π) = max
x∈X

EU(x, π). (25)

A responser to a queryq provides information about the true utility function and changes our current
beliefsπ according to the Bayes’ rule:

πr(u) = π(u|r) =
Pr(r|u)π(u)

Pr(r|π)
. (26)

Thus, after responser, the maximum expected utility isMEU(πr). To calculate the value of a query, the
MEUs of its possible responses should be weighed according to their likelihood. Theexpected posterior
utility of the queryqi is:

EPU(qi, π) =
∑

r∈Ri

Pr(r|qi, π) MEU(πr). (27)

Theexpected value of informationof the queryqi is its expected posterior utility minus its current maximum
expected utility:

EV OI(qi, π) = EPU(qi, π) − MEU(π). (28)

EVOI of the queryqi denotes the gain in expected value of the ultimate decision.A myopically optimal
querying strategy would always select a query whose EVOI is greatest, after accounting for query costs. A

6More generally, costs could depend on the true utility function, or be associated with responses.
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sequentially optimalstrategy would consider the value of future queries when computing the EVOI of the
current query. Even though some query might be very costly inshort term, it might be able to direct the
elicitation process to good regions (in terms of decision quality) of the utility space which might otherwise
remain unexplored by the myopic EVOI strategy. The myopic EVOI approach is more popular in practice
(used in [Chajewska and Koller, 2000, Braziunas and Boutilier, 2005]) because computational requirements
of sequential EVOI are often prohibitive.

Sequential EVOI An obvious way to minimize the shortcomings of myopic querying strategies is to
perform a multistage lookahead. Unfortunately, such multistage search would have to be computed online
(during the execution of the policy), which might seriouslylimit its benefits.

Another approach is to compute a sequentially optimal policy offline. Boutilier [2002] introduces
the concept of preference elicitation as a POMDP that takes into account the value of future questions
when determining the value of the current question. As before, we assume a system that makes decisions
on behalf of a user; such a system has a fixed set of choices (actions, recommendations) whose effects
are generally known precisely or can be modeled stochastically. The system interacts with a user in a
sequential way; at each step it either asks a question, or determines that it has enough information about a
user’s utility function to make a decision. As each query hasassociated costs, the model allows the system
to construct an optimal interaction policy which takes intoaccount the trade-off between interaction costs
and the value of provided information. The approach is discussed in more detail in Section 4.6.2.

4 Research on preference elicitation

In this section, we survey several fields in decision analysis, consumer research, and AI, where prefer-
ence elicitation plays a central role. Imprecisely specified multiattribute utility theory (ISMAUT) is one of
the earlier attempts to consider decision making under partial preference information in classical decision
analysis. Its extensions to engineering design and configuration problems have been influential in spurring
recent interest in preference elicitation among artificialintelligence researchers. Conjoint analysis and ana-
lytical hierarchy process (AHP) methods that were developed largely in isolation in the fields of marketing
research and decision analysis also attempt to solve preference elicitation issues of general interest. We
finish by providing an overview of some recent work in preference elicitation in AI.

4.1 ISMAUT

“Screening of Multiattribute Alternatives” [Sarin, 1977]
“An interactive procedure for aiding multiattribute alternative selection” [White et al., 1983].
”A Model of Multiattribute Decisionmaking and Trade-off Weight Determination under Uncertainty” [White et al.,
1984]
“Ranking With Partial Information: A Method and an Application” [Kirkwood and Sarin, 1985]
“Partial Information, Dominance, and Potential Optimality in Multiattribute Utility Theory” [Hazen, 1986]
“A penalty function approach to alternative pairwise comparisons in ISMAUT” [Anandalingam and White, 1993]

One of the earlier attempts to consider decision making under partial preference information is the
work on imprecisely specified multiattribute utility theory, or ISMAUT, by White et al. [1983, 1984],
Anandalingam and White [1993]. A similar framework was proposed before by Fishburn [1964] and Sarin
[1977]. Related research by, e.g., Kirkwood and Sarin [1985], Hazen [1986], Weber [1987], deals with
similar issues, even though it is not customarily called ISMAUT.

16



ISMAUT applies to situations in which the utility function can be written in a normalized additive
form, i.e., as a sum of weighted local value functions for each attribute. The decision maker has to choose
from a finite set of multiattribute alternatives. The goal ofISMAUT is to restrict the set of alternatives
to those that are not dominated by any other alternative, based on the prior information on local value
functions, weights, and comparisons between pairs of alternatives. If the reduced alternative set is too big
for the decision maker to make a choice, we should assess local value functions or weights more accurately,
reduce the set of nondominated alternatives, and continue the process as long as is necessary for optimal
alternative selection. An obvious drawback of this scheme is the lack of an intelligent query selection
strategy to drive the elicitation process. In the followingsection, we discuss the research that considers
querying strategies in ISMAUT-like elicitation settings.

Let A be the set of sizem of available multiattribute alternatives, whose generic element isx. Each
alternativex is a point in ann-dimensional consequence space:x = (x1, x2, . . . , xn). The preference
relation overA can be expressed by an additive utility function:

u(x) =

n
∑

i=1

wi vi(xi) = w · v(x),

wherew is a vector of weights, andv(x) is a vector of local value function values of alternativex.
The model can incorporate three types of prior information (or responses to utility queries): compar-

ison of attribute weightswi, information about local value functionsvi(·), expressed by sets of linear
inequalities, and pairwise preference statements about alternatives in the setA. In particular,

1 Knowledge about relative importance of the tradeoff weights (“Color is more important than screen
size”) or bounds on their values (“This attribute’s weight is between 0.5 and 1”)7 allows us to define
a feasible subsetW ⊆ {w ∈ R

n : wi ≥ 0,
∑

i w1 = 1} of all possible weights via linear constraints.

2 Similar to statements about weights, ISMAUT allows us to model information about individual local
value functions by means of linear constraints. If the thirdattribute is computer’s speed, and the user
prefers faster computers, ceteris paribus, thenv3(’fast’) ≥ v3(’slow’). The user might also be able to
provide bounds for local values of specific attribute levels(e.g.,v3(’fast’) ∈ [0.3; 0.7]). Such linear
constraints define the spacesV1, . . . , Vn of possible local value functions.

3 Finally, even if the user is unable to select the best alternative right away, she might be able to
compare some pairs of alternatives. LetJ be the set of such comparisons: for eachj ∈ J there is a
pair (x̂j ,xj) ∈ A × A if and only if the user has specified thatx̂j � xj . The set of comparisonsJ
can be used to impose further restrictions on the weight space, becausej ∈ J impliesw · v(x̂j) ≥
w · v(xj).

All this prior information defines the setC of feasible weights and local value functions. More pre-
cisely, the tuple〈w, v1, . . . , vn〉 ∈ C if and only if

w ∈ W,

vi(·) ∈ Vi, for all i = 1, . . . , n,

w · [v(x̂j) − v(xj)] ≥ 0, for all j ∈ J.

7Although many authors talk about the “importance” of attributes, we should be aware that weights are nothing more than scal-
ing factors. The statements about weights are nonetheless meaningful: wi ≥ wj means that outcome(x⊤

i ,x⊥

iC
) is preferred to

(x⊤

j , x⊥

jC
), andwi ∈ [0.5; 1] means thatu(x⊤

i , x⊥

iC
) ∈ [0.5; 1].
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The additive structure of utility functions allows us to usethe setC to eliminate dominated alternatives.
First, we define the binary relationR(C) ⊆ A × A as follows:

(x̂,x) ∈ R(C) ⇐⇒ w · [v(x̂) − v(x)] ≥ 0, for all 〈w, v1, . . . , vn〉 ∈ C.

This means that̂x � x if and only if (x̂,x) ∈ R(C).8 Whenw·v(x′) = w·v(x) for all 〈w, v1, . . . , vn〉 ∈ C,
thenx andx′ are said to be equal (with respect toC).

The set ofnondominatedalternativesND(C) can be computed using the relationR(C): x̂ is non-
dominated if there is no nonequal alternativex such that(x, x̂) ∈ R(C). We should note that without
prior information,C contains all possible weights and value functions, andND(C) is equal to the Pareto-
optimal set of alternatives.ND(C) is important because the most preferred alternative has to be in it. The
goal of ISMAUT is to reduce the set of nondominated alternatives until the user can select the optimal one.
More information about the possible local value functions and weights reduces the setC, increases the
binary relationR(C), and reduces the size ofND(C):

C ⊆ C′ =⇒ R(C′) ⊆ R(C) ∧ ND(C) ⊆ ND(C′).

The setND(C) can be computed fromR(C) in polynomial time in size of the alternative setA, because
for each alternative, we need to check that no other alternative is preferred. The central computational task
is therefore to computeR(C) from C. Recall that(x̂,x) ∈ R(C) if and only if w · [v(x̂)− v(x)] ≥ 0, for
all 〈w, v1, . . . , vn〉 ∈ C. This amounts to verifying that

min
〈w,v1,...,vn〉∈C

w · [v(x̂) − v(x)] ≥ 0. (29)

If J = ∅, then there is no prior information about pairwise preferences between alternatives; the con-
straint setC contains all the weights inW , and value functions inV1, . . . , Vn. In this case, researched in
White et al. [1983], Eq. 29 becomes

min
w∈W

(

n
∑

i=1

wi min
vi∈Vi

[vi(x̂i) − vi(xi)]

)

≥ 0. (30)

This problem can be solved in a straightforward manner byn + 1 linear programs.
Adding constraints to the setJ complicates the solution, because the weight and value function con-

straints get tied together by comparisons of global alternatives. Anandalingam and White [1993] propose
a general penalty function method for determining membership in R(C). However, since such methods
often suffer from slow convergence and ill-conditioning (see, e.g., [Bazaraa and Shetty, 1979]), two special
cases of approximatingR(C) were analyzed by White et al. [1984], and Anandalingam and White [1993].

Let Cmin be a set of tuples〈w, v1, . . . , vn〉 such thatw ∈ W , vi ∈ Vi, and for allj ∈ J ,

n
∑

i=1

wi min
vi∈Vi

[vi(x̂
j
i ) − vi(x

j
i )] ≥ 0. (31)

Similarly, letCmax be a set of tuples〈w, v1, . . . , vn〉 such thatw ∈ W , vi ∈ Vi, and for allj ∈ J ,

n
∑

i=1

wi max
vi∈Vi

[vi(x̂
j
i ) − vi(x

j
i )] ≥ 0. (32)

8In this case, the relation� denotes derived, or provable preference, rather than “true” preference.
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Inequalities 31 and 32 impose linear constraints on weights. Therefore, solving forR(Cmin) andR(Cmax)
is straightforward, since this case is similar to theJ = ∅ case described above.

How canCmin andCmax be used to approximateR(C)? From Eq. 31 and 32, we note thatCmin ⊆
C ⊆ Cmax, and therefore,R(Cmax) ⊆ R(C) ⊆ R(Cmin). Without computingR(C), we can infer
two facts:

(x̂,x) ∈ R(Cmax) =⇒ (x̂,x) ∈ R(C),

(x̂,x) /∈ R(Cmin) =⇒ (x̂,x) /∈ R(C).

Therefore, it is only when(x̂,x) /∈ R(Cmax) or (x̂,x) ∈ R(Cmin) that membership inR(C) needs to be
determined directly.

Hazen [1986] and Weber [1987] point out that the set of nondominated alternatives is not the same as
the set ofpotentially optimalalternatives, which is a subset ofND(C). It is possible that an alternative is
not dominated by any other alternative, but is dominated by acollection of alternatives (Weber [1987] calls
this mixed dominance). Or, alternatively, a potentially optimal alternative always has a feasiblewitness
utility function for which it is an optimal alternative. When local value functions are known, the witness
weight vector can be found by solving a linear program.

4.2 Engineering design and configuration problems

”Multiobjective Intelligent Computer-Aided Design” [Sykes and White, 1991]
”Preference-Directed Design” [D’Ambrosio and Birmingham, 1995]

One field in which applications and extensions of ISMAUT havebeen proposed isengineering design.
Design is a multidisciplinary area with no precise definition. Generally, any problem of designing a com-
plex system that has to comply to some performance requirements and satisfy operational constraints can
be regarded as an engineering design problem. Examples include communication networks, computer sys-
tems, bridges, etc. Some areas within engineering design that have tight connections to AI areAI in design
(AID), knowledge-based design systems(KBDS), andintelligent computer-aided design(ICAD) [Brown
and Birmingham, 1997]. As we shall see,configuration design[Wielinga and Schreiber, 1997] is a partic-
ularly relevant formalization of the problem with regard topreference elicitation. A recent report by the
Board on Manufacturing and Engineering Design [2001] stresses the importance of the decision-theoretic
approach in engineering design.

The paper of Sykes and White [1991] onmultiobjective intelligent computer-aided design(MICAD)
extends the ideas of ISMAUT to the problem of configuration design. The design process is viewed as a
combination of the progressively acquiredpreferential componentand ana priori operational component.
MICAD thus combines iterative capture of user preferences with the search in the constrained space of
feasible designs. Preference elicitation can be directed toward promising (and feasible) regions of the
design space, thus avoiding the cost of wasted elicitation effort. On the other hand, the search for optimal
designs can be substantially facilitated by preference information.

Intuitively, a configuration problem is that of “configuring” a system. A decision to be taken consists
of a number of components, or aspects, which interact in complex ways to produce an outcome. A typical
example is configuring a computer system from a set of components — choosing a processor, compatible
memory, peripherals, etc. Possibleconfigurationsare restricted by hard feasibility constraints. The optimal
configuration depends on user preferences; however, those preferences are expressed overfeaturesor at-
tributesof configurations (ordesigns). For example, a user might want a “reliable home computer”,which
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is a point in thefeature space(or performance space), rather thanconfiguration space. A mapping from
configuration space to feature space induces indirect preferences over configurations.

Let T = T1 × . . . × Tm be a multiattribute configuration space, where eachTi is a set of components
to choose from. As before, the outcome, or feature, space will be denoted asX. Components represent
controllable aspects of a design problem, whereas configuration features allow for a direct expression of
user preferences. Feasible configurationsTF ⊆ T form a subset of the configuration space; they could be
specified by a set of rules, logical formulas, or usingconstraint satisfaction problem(CSP) formulations.9

A performance function10 f : T 7→ X provides a mapping from configuration space to feature space.
The problem is complicated by the fact that this functionf(·) might not have any useful mathematical
properties (such as continuity, monotonicity or invertibility), and might not be expressed in closed form.
Determination off(t), t ∈ T might also be costly and require expert analysis or simulation.

The problem of engineering design can thus be summarized follows: given a set of components and
features, a set of operational constraints on configurations, a performance function, and a preference re-
lation over the outcome space, find an optimal feasible configuration. This general problem is addressed
in [Sykes and White, 1991, D’Ambrosio and Birmingham, 1995]using ISMAUT, and in [Boutilier et al.,
1997] using CP-nets.

Sykes and White [1991] investigate direct application of ISMAUT ideas to the design process. It is
assumed that local value functions are known, so only weights are uncertain. Information about weights can
be queried from the user in two ways, already described above: (1) the user can provide direct information
about weights, expressed as linear constraints; (2) the user can compare pairs of designs to induce linear
inequalities in the weight space (this requires solving Eq.30). Preference elicitation can occur at any time
during an iterative design process. MICAD is presented as a general framework for interactive preference
elicitation and search in the space of designs. It is assumedthat the search proceeds in stages, at which
a finite set of designs is available for the user to evaluate. Two crucial issues are not directly addressed:
how to select a set of designs (from potentially exponentialnumber of possibilities) at each stage, and what
query selection strategy to follow when eliciting user preferences.

D’Ambrosio and Birmingham [1995] tackle the first issue. They formulate the design engineering
problem as a constrained optimization problem. The objective function is an incomplete value function
created by pairwise ranking a random sample of design alternatives. Operational constraints are modeled
as a CSP. Therefore, CSP solution techniques, such as constraint network decomposition and constraint
propagation, can be harnessed to facilitate a branch-and-bound search for optimal designs.

4.3 Extensions of ISMAUT

“Q-Eval: Evaluating Multiple Attribute Items using Queries” [Iyengar et al., 2001]
“Polyhedral Sampling for Multiattribute Preference Elicitation” [Ghosh and Kalagnanam, 2003]
”Question Selection for Multiattribute Decision-aiding”[Holloway and White, 2003]

Classical ISMAUT is mostly concerned with narrowing the setof alternatives to a manageable size
using partial preference information. The following papers address an important issue of how to select
queries in a sequential elicitation process. Like in ISMAUT, the additive utility function over attributes is
assumed.

The Q-Eval algorithm of Iyengar et al. [2001] asks the user tocompare pairs of selected alternatives,
and uses the responses to refine the preference model. The local value functions are specified precisely,

9A constraint satsifaction problem deals with finding a feasible assignment to a set of variables subject to a set of constraints.
Dechter [2003] provides a detailed overview of CSP algorithms and models.

10In [Boutilier et al., 1997], the performance function is called acausal model, because it is expressed by a set of logical rules.
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so utility function uncertainty is represented by linear constraints on the weight space. Given a set of
alternatives, the authors address the issue of which pair topresent to the user for ranking in a sequential
elicitation process. Each response to the query “Isx̂ preferred tox?” adds a linear constraint which
reduces the region of feasible weightsW . Since a response is not known beforehand, the authors advocate
a heuristic of choosing the query that would come closest to bisecting the space of feasible weights. The
rationale for this querying strategy is to shrink the space of possible weights as quickly as possible.

The implementation of Q-Eval employs a number of approximations to ensure practical online per-
formance. First, the number of alternative pairs considered is pruned based on the normal distance of
corresponding hyperplanes to the “center” of the regionW . Intuitively, hyperplanes close to the center
are good candidates for bisecting the regionW equally. The notion of center used throughout the paper
is that ofprime analytic center, which is the point that maximizes the sum of log distances tothe irredun-
dant hyperplanes defining the region. In case a decision has to be made with uncertain information, the
center serves as a representative weight vector. Queries that were not pruned in the previous step are then
evaluated based on the volumes of the resulting polytopes (the best query leads to the most equal partition
of the weight space). The volumes are approximated by the size of the tightest axis-orthogonal bounding
rectangle.

Ghosh and Kalagnanam [2003] consider the same problem and propose to use sampling for determining
the center of the weight regionW . In particular, they use a hit-and-run sampling technique that employs a
Markovian random walk defined on the setW with a uniform stationary distribution. The advocated query-
ing strategy is to ask a query whose corresponding hyperplane is orthogonal to the longest line segment
contained inW . The method is quitead hoc, but works fast in practice.

The two query selection methods described above try to minimize the number of queries by shrinking
the region of possible weights as fast as possible. However,they do so myopically, without considering
the value of asequenceof queries. Holloway and White [2003] present a POMDP model for sequentially
optimal elicitation in an ISMAUT-like setting, where uncertainty about utility functions is specified by
linear constraints on weight vectors.

The state space in this POMDP model is the (uncountable) collection of all subsets of tradeoff weights
{w ≥ 0 :

∑

wi = 1}. Intuitively, a system is in stateW , if W is the largest region of the weight
space constrained by previous elicitation responses. Actions are binary queries asking to compare pairs
of alternatives, and observations areyes/no answers to such queries. It is assumed that there is no noise
in user responses. The observation function is the probability of getting a responser to the queryq when
the true tradeoff weight vector lies in the setW ; a uniform probability distribution over the weight space
is assumed, although more general probability models couldbe accommodated. The process moves from
one state to another as the feasible weight region shrinks due to linear constraints imposed by responses to
queries.

To define the cost structure, we need to introduce a notion of the solution partition, which divides the
set of all weights into convex regions where one alternativedominates all others. Formally, ifA is the set
of alternatives, asolution partitionis {Wa : a ∈ A}, where

Wa = {w : w · v(xa) ≥ w · v(xa′ ) ∀a′ ∈ A}. (33)

Elicitation goals can be encoded using the cost model. LetT be a maximum number of queries that can
be asked (thus, we consider a finite-horizon POMDP). For a given weight vector setW , c(W, q) is the cost
of asking the queryq, andc̄(W ) is the terminal cost of ending up with the setW after all questions have
been asked. If the goal is to ask as few queries as possible to determine an optimal alternative, then we
can set̄c(W ) = 0, c(W, q) = 0 if there isa ∈ A such thatW ⊆ Wa, andc(W, q) = 1 otherwise. The
optimal policy of this POMDP will ask the fewest queries possible until it finds the smallestt ≤ T such
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that W (t) ⊆ Wa for somea ∈ A. One can similarly define a simple cost function for minimizing the
expected uncertainty of knowing the problem’s solution afterT questions.

Since the POMDP described above is hard to solve in the most general form (although ideas from
[Boutilier, 2002] would be applicable here as well), the authors concentrate on the case in which restrictions
on the cost function guarantee a finite, piecewise linear, representation of the POMDP value function. This
is possible if the cost function depends onW only through a finite probability distributionpW (·) over
alternatives. For eacha ∈ A, pW (a) is the probability that alternativea is optimal, given that the true
weight vector is inW . Such cost functions are too restrictive for POMDPs that model the optimal tradeoff
between elicitation costs and expected improvement in decision quality; however, they can be used to
achieve the two goals mentioned in the previous paragraph.11

Holloway and White [2003] do not perform empirical validation of the approach or provide a suitable
POMDP solution algorithm. Quite unrealistically, the authors also assume perfect responses to queries.
Nevertheless, it is the first attempt to describe a model for sequentially optimal query selection in ISMAUT
problems.

4.4 Conjoint analysis

“Conjoint Measurement for Quantifying Judgmental Data” [Green and Rao, 1971]
“Conjoint Analysis in Consumer Research: Issues and Outlook” [Green and Srinivasan, 1978]
“Conjoint Analysis in Marketing: New Developments with Implications for Research and Practice” [Green and
Srinivasan, 1990]
”Polyhedral Methods for Adaptive Choice-Based Conjoint Analysis” [Toubia et al., 2004]
“Fast Polyhedral Adaptive Conjoint Estimation” [Toubia etal., 2003]

Since the original paper by Green and Rao [1971], conjoint analysis has become a major area in mar-
keting research.12 Conjoint analysis is a set of techniques for measuring consumer tradeoffs among multi-
attribute products and services. Despite differences in terminology and methodology, conjoint analysis and
multiattribute decision analysis (in particular, ISMAUT)deal with similar issues in preference elicitation
and modeling.

The goal of conjoint analysis is to decompose consumer preferences over multiattributeproducts(or
profiles) into component preferences over attributes in order to predict aggregateconsumer behavior, ex-
plain preferences for current products, visualize market segmentation, and help design new products. Thus,
the emphasis is generally on predictive and descriptive, rather than prescriptive aspects of consumer be-
havior.

Usually, an additive utility function is assumed — the totalvalue of a product is the sum of partial
contributions (partworths) of individual attributes (features). Formally, letyj = u(xj) be a specified
rating of the productxj . A general conjoint analysis model is

yj =

t
∑

i=1

vi zj
i , (34)

wherezj
i are input variables,yj is a dependent output variable, andvi are parameters to be estimated. Input

variableszj
i depend on the attributes of the productxj :

11For example, the problem of minimizing the number of queriescan be encoded by settinḡc(pW ) = 0, c(pW , q) = 0 if there
existsa ∈ A such thatpW (a) = 1, andc(pW , q) = 1 otherwise.

12[Green and Srinivasan, 1978] and [Green and Srinivasan, 1990] are key historical surveys of conjoint analysis.
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• For continuous attributes whose value is monotonically increasing,zi = xi. If all attributes are like
that, then the model reduces to the familiar linear value functionu(x) =

∑

i wi xi, and parameters
vi can be viewed as weightswi.

• For continuous attributes whose local value functions are substantially nonlinear, severalzi variables
can be used for approximation. In a case of quadratic function for attributei, two z variables are
introduced: one equal toxi, and the other equal tox2

i . Such local value models are quite com-
mon in conjoint analysis (one example is theideal-point model, where local preference increases
quadratically until some ideal-point level, and decreasesafter that).

• For discrete binary attributes with two levelsx⊤
i andx⊥

i , we setzi = 1 if Xi = x⊤
i , andzi = 0 if

Xi = x⊥
i . Then an estimated parametervi can be thought of as a local value of the best level ofxi.

• Discrete attributes withk levels are converted intok − 1 binary “dummy” attributes. Constraints on
indicator variableszi are added to ensure consistency of representation.

Given preference information about whole products (such asordinal or cardinal product ranking, com-
parison, or preferred choice from a set of products), some form of regression is used to find parameters that
aremost consistentwith specified preferences, which are usually aggregate. For example, a common type
of application is to elicit preferences over full profiles using a rating or ranking scale, and then estimate
attribute partworths by least-squares regression. The underlying assumption is that ranking or rating full
products is easier than providing attribute partworths, aslong as the number of attributes is small.

Many aspects of preference elicitation considered in this report have their equivalents in conjoint anal-
ysis, too. Approaches are differentiated according to datacollection formats (i.e., “query types”), question
design (“query selection”), and parameter estimation procedures (“decision making with incomplete infor-
mation”). The most common data collection format is full profile evaluation, where a user is asked to order
all products (stimuli) in a given set, or provide a metric rating of each stimulus. Of course, the user’s burden
grows dramatically with the size of stimulus set. Some methods therefore employ partial profile evalua-
tions.Choice-based conjoint analysis(CBC) is a popular compromise technique, where instead of ranking
all profiles, a user is asked to choose the most preferred froma given a set.Metric paired-comparisonfor-
mat asks to consider only pairs of profiles, but expects quantitative answers regarding relative preference.13

Until recently, most applications of conjoint analysis either presented the same questions to all re-
spondents, blocked them across sets of respondents, chose randomly, or adapted them based on responses
from prior respondents. Adaptive question design for individual respondents in the manner of ISMAUT
was first considered by Toubia et al. [2003, 2004] in metric paired-comparison and CBC settings. This
new approach, termed thepolyhedral method, works by iteratively constraining the polyhedron of feasible
subutility (partworth) values. The attributes are discrete and binary (multilevel attributes can be represented
using dummy variables), so each product is represented by a point in the space of attribute partworths. In
CBC, binary comparison questions result in a separating hyperplane that cuts the polyhedron of feasible
subutilities. More generally, a respondent is presented with a set of products, and asked to choose one of
them. A choice set of sizek definesk(k−1)/2 possible hyperplanes; for each ofk choices available,k−1
hyperplanes determine the new polyhedron.

In polyhedral methods, the goal is to reduce the size of uncertainty polyhedron as fast as possible. Ques-
tions are designed to partition the polyhedron into approximately equal parts; in addition, shape heuristics
are used to favor cuts that are perpendicular to long axes. Since the problem is computationally hard, many
approximations similar to Q-Eval [Iyengar et al., 2001] areemployed. The polyhedron’s volume is approx-
imated by a bounding ellipsoid, and its center by the analytic center. Then,k points at whichk/2 longest

13In practice, a user is usually provided with a set of qualitative choices specifying by how much productx is preferable to product
y (e.g., “I like x much more thany”, “I like x a little more thany”, “I like x as much asy”, etc.); these choices are then converted to
a quantitative scale.
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axes intersect the polyhedron are used to selectk profiles for the next choice-based query. This technique
is extended to metric paired-comparison queries in Toubia et al. [2003].

Conjoint analysis and decision analysis have largely developed in parallel, without much interaction.
However, recent emphasis on sequential preference elicitation in both fields presents opportunities for fer-
tile interaction. Conjoint analysis offers a variety of query formats that have been validated in practice, and
many experimental domains in consumer research. Its limitations include reliance on full profile queries,14

which work only for products with a few (usually less than ten) attributes, common assumptions of attribute
independence, and lack of integration of preference elicitation and product feasibility constraints.

4.5 Analytic hierarchy process

“A scaling method for priorities in hierarchical structures” [Saaty, 1977]
“The analytic hierarchy process” [Saaty, 1980]
”Preference Ratios in Multiattribute Evaluation (PRIME)–Elicitation and Decision Procedures under Incomplete In-
formation” [Salo and Hämäläinen, 2001]

Analytic hierarchy process(AHP) is an alternative method of decision analysis developed by Saaty
[1977, 1980]. The main ideas of the AHP method can be explained in comparison to additive value theory
(see [French, 1986]), although the connection between the two approaches was developed well after the
original work on AHP.

The problem is to select the best alternative from the set ofm multiattribute alternativesx1,x2, . . . ,xm

under certainty. Each alternative is measured againstn attributes: xi = (xi
1, x

i
2, . . . , x

i
n). The value

function is represented as a weighted sum of strictly positive local value functionsvi(·):

v(xi) =
n
∑

k

wivk(xi
k) =

n
∑

k

wiv
i
k, (35)

wherevi
k is the local value of theith alternative on thekth attribute. The weights and local value functions

are not normalized to[0; 1].
The main difference between AHP and classical decision analysis lies in the elicitation of weights and

local value functions. Instead of direct responses regarding attribute weights and local value functions,
AHP assumes that a user can instead provide all the entries ofthe so-calledpositive reciprocal matrices.
For each attributek, the entries can be thought of as ratios of local value functions:

Rk =











1 r12
k . . . r1m

k

1/r12
k 1 . . . r2m

k
...

... . . .
...

1/r1m
k 1/r2m

k . . . 1











=




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


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k . . . v1
k/vm

k
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k . . . v2
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k
...

... . . .
...
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k /v1
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k /v2

k . . . vm
k /vm

k











, (36)

whererij
k is the ratio of local valuesvi

k andvj
k. Besidesk attribute matrices, an additional matrixR is

elicited to provide information about relative importanceof attributes.

R =











w1/w1 w1/w2 . . . w1/wn

w2/w1 w2/w2 . . . w2/wn

...
... . . .

...
wn/w1 wn/w2 . . . wn/wn











. (37)

14There are methods of conjoint analysis that do not employ full product comparisons, but they are less popular and not as well
grounded theoretically from the decision theory perspective.

24



The entries ofR can be interpreted as ratios of attribute weights.
Given the entries of the positive reciprocal matrices, AHP derives the weights and local value functions

for the attributes. If the matrix entries were consistent, such derivation would amount to solving a simple
system of linear equations. In a likely case of inconsistententries, the local value functions and weights
are estimated using one of several averaging techniques (eigenvector-based estimation is commonly advo-
cated). The alternatives are ultimately ranked by the resulting additive value function.

The key issue is eliciting the positive reciprocal matrices. For attribute matrices, the user is asked
to compare pairs of alternatives on each attribute.15 For a pair of alternativesxi andxj compared on
attributek, the ratiorij

k is 1, if xi is equallypreferred toxj , 3 — weaklypreferred, 5 —stronglypreferred,
7 — demonstrablypreferred, and 9 —absolutelypreferred. The weight matrix is elicited by a similar
process — one attribute can be “equally important”, “weaklymore important”, “strongly more important”,
“demonstrably more important”, and “absolutely more important” than another.

Issues such as elicitation costs, decision making with incomplete information, and query selection
criteria are as important in the AHP as in classical decisiontheory. Salo and Hämäläinen [1995, 2001,
2004] maintain that decisions should be made with incomplete information if elicitation costs outweigh
potential improvement in decision quality. Preference uncertainty is described by bounds on value function
ratios (i.e., the entries of positive reciprocal matrices). Several decision criteria are discussed, and “central
values” approach (see Section 3.2.1) favored on the groundsof empirical simulations. Query selection is
not addressed.

AHP is a controversial method (see, e.g., [French, 1986, Salo and Hämäläinen, 1997] for some crit-
icisms of AHP). While quite popular in practice,16 it is not as well grounded theoretically as classical
decision theory. One problem is that while local value functions are interval scales, the construction of
positive reciprocal matrices assumes that they areratio scales;17 AHP fails to provide an axiomatic basis
for such a strong assumption. Elicitation of matrix entriesis also problematic, since it hard to provide an
exact semantic meaning to the AHP queries. The nine-point scale is a source of further controversy. If
level 1 of an attribute is absolutely preferred to level 2, and level 2 is absolutely preferred to level 3, then
the ratio of level 1 and level 3 should be9 × 9 = 81. However, the scale allows only numbers from 1
to 9. Finally, AHP violates the principle of independence ofirrelevant alternatives (i.e., the principle that
ranking between two alternatives should be independent of other available alternatives).

4.6 Preference elicitation in AI

4.6.1 Minimax regret approach

”Incremental Utility Elicitation with the Minimax Regret Decision Criterion” [Wang and Boutilier, 2003]

“Cooperative Negotiation in Autonomic Systems using Incremental Utility Elicitation” [Boutilier et al., 2003a]
“New Approaches to Optimization and Utility Elicitation inAutonomic Computing” [Patrascu et al., 2005]

”Constraint-based Optimization with the Minimax DecisionCriterion” [Boutilier et al., 2003b]
“Regret-based Utility Elicitation in Constraint-based Decision Problems” [Boutilier et al., 2005]

15Ceteris paribuswith respect to remaining attribute values should certainly be assumed, although such issues, and many other, are
often skirted in AHP literature.

16Among the main reasons for AHP popularity is the relative simplicity of elicitation queries: to obtain a total ranking ofmultiat-
tribute alternatives, a user is only asked to provide a qualitative comparison betweenpairs of attributes.

17Functions on a ratio scale are unique up to positive scaling.

25



Minimax regret criterion can be used both for making robust decisions under strict uncertainty and for
driving an elicitation process. Contrary to the methods in the previous section, the quality (difference from
optimal) of a minimax regret optimal decision can be bounded; these bounds can be tightened with further
elicitation effort. Minimax regret methods have been applied to several areas of AI, including auctions
[Wang and Boutilier, 2003], autonomic computing [Boutilier et al., 2003a, Patrascu et al., 2005], combi-
natorial auctions [Boutilier et al., 2004b], and constrained configuration problems [Boutilier et al., 2003b,
2005].

Wang and Boutilier [2003] consider a simple problem with a flat outcome space and binary standard
gamble queries. A response to a query results in a new decision situation with a new level of minimax
regret. The (myopic) value of a query is a function of response values. The authors consider three ways
of combining response values: maximin improvement (selectthe query with the best worst-case response),
average improvement (select the query with the maximum average improvement), and expected improve-
ment (select the best query based on improvements weighted by the likelihood of responses). It turns out
that the expected improvement criterion, combining a Bayesian query selection strategy and a robust min-
imax regret decision criterion, performs best experimentally and is not subject to stalling — the situation
when no query improves the minimax regret level. Using binary standard gamble queries, the querying
strategy can be optimized analytically.

Boutilier et al. [2003b] address the problem of choosing thebest configuration from the set of feasible
configurations encoded by hard constraints. It is assumed that preferences over configurations can be rep-
resented by a GAI utility function; however, this function is imprecisely specified by bounds on GAI subu-
tility function values. The authors propose the use of minimax regret as a suitable decision criterion and
investigate several algorithms based on mixed integer linear programming to compute regret-optimizing
solutions efficiently.

In [Boutilier et al., 2005], the authors concentrate on the utility elicitation aspect and provide an em-
pirical comparison of minimax regret reduction strategiesin GAI utility models, where uncertainty over
utilities is expressed by bounds on local factor values. Theobjective is to refine utility uncertainty and
reduce minimax regret with as few queries as possible. The queries areboundqueries: the user is asked
whether a specific local utility parameter lies above a certain value. A positive response raises the lower
bound, while a negative response lowers the upper bound of a local subutility value.

The halve largest gap(HLG) elicitation strategy recommends a query at the midpoint of the bound
interval of the GAI factor setting with the largest gap between upper and lower bounds. HLG uniformly
reduces uncertainty over the entire utility space and therefore provides the best theoretical minimax regret
reduction guarantees. It is related to polyhedral methods (with rectangular polytopes) in conjoint analysis
which attempt to maximally reduce uncertainty with each query. Another,current solution(CS), strategy,
uses heuristics to focus onrelevantparts of the utility space and works better in practice. CS relies on
two special outcomes that are directly involved in calculating the regret level:x∗, the minimax optimal
configuration, andxw, thewitnesspoint that maximizes the regret ofx∗. The CS strategy considers only
local factor settings that are part of these two special outcomes and asks about the one with the largest gap.
A few other heuristic strategies are also tested in experiments.

The minimax regret criterion can also be applied to a completely different domain of autonomic com-
puting [Boutilier et al., 2003a, Patrascu et al., 2005]. To solve the problem of optimal resource allocation
one needs to know the utility of different levels of resourceapplied to the distributed computing elements.
Unfortunately, even a single evaluation of the utility function is very costly. Patrascu et al. [2005] investi-
gate how to sample a monotonic non-decreasing utility function with a continuous unidimensional domain
using strategies similar to CS and HLG.
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4.6.2 Bayesian approach

”Utilities as Random Variables: Density Estimation and Structure Discovery” [Chajewska and Koller, 2000]
”Making Rational Decisions Using Adaptive Utility Elicitation” [Chajewska et al., 2000]
”A POMDP Formulation of Preference Elicitation Problems” [Boutilier, 2002]
“Local Utility Elicitation in GAI Models” [Braziunas and Boutilier, 2005]

If uncertainty about utility functions can be quantified probabilistically, then one can design preference
elicitation strategies that optimally balance the tradeoff between elicitation effort and the impact of infor-
mation on the decision quality. Until recently, this approach has been explored very little. In this section,
we take a look at some of the attempts to solve this problem by AI researchers.

Myopic EVOI The work of [Chajewska et al., 2000] was arguably the first to adopt a consistent Bayesian
view of the preference elicitation problem. If the utility function is not fully known, it is treated as a random
variable drawn from the prior distribution [Chajewska and Koller, 2000]. The value of a decision in an
uncertain situation is computed by taking an expectation over all possible utility functions. Furthermore,
the value of a query is simply its expected value of information.

The proposed framework leads to a simple elicitation algorithm. At each step, the query with the
highest EVOI is asked, and the distribution over utilities is updated based on user responses. The process
stops when the expected value of a decision meets some termination criteria. Because the sequential EVOI
(which takes into consideration all possible future questions and answers) is hard to compute, the value of
a query is approximated by themyopicEVOI (see Eq. 28).

In the prenatal diagnosis decision model described in the paper, the outcome space of sizen is discrete
and unstructured (flat). Therefore, the space of all utilityfunctions can be represented by ann-dimensional
unit hypercube. A multivariate Gaussian distribution (restricted to [0;1]) is used to model the prior over
utilities. After a binary standard gamble query (“Is utility of outcomex greater thanp?”), the resulting
posterior becomes a truncated Gaussian, which is thenapproximatedby a new multivariate Gaussian dis-
tribution. Experimental results on the domain with 108 outcomes show that very few queries are needed to
reduce the expected utility loss below a small threshold.

Braziunas and Boutilier [2005] also adopt a myopic approachto choosing the next query in eliciting
parameters of GAI models. In this case, EVOI computation is facilitated by the additive structure of
GAI utilities. The uncertainty over utilities is quantifiedvia independent priors over local value function
parameters. In such a case, an appropriate form of query is “Is local utility of suboutcomexi greater than
l?”. Such queries arelocal queries, because they ask a user to focus on preferences overa (usually small)
subset of attributes; the values of remaining attributes donot have to be considered. The authors show that
the best myopic query can be computed analytically if the prior information over local utility parameters
is specified as a mixture of uniform distributions [Boutilier, 2002]. Such mixtures fit nicely with the type
of queries that result in axis-parallel density “slices”, because the posterior distribution after a response to
a query remains a mixture of uniforms. It is therefore possible to maintain an exact density over utility
parameters throughout the elicitation process.

Preference elicitation as a POMDP To overcome the shortcomings of myopic EVOI approaches, the
preference elicitation problem can be modeled as a POMDP [Boutilier, 2002]. The state space of the
preference elicitation POMDP is the set of possible utilityfunctionsU ; actions can be either queries about
a user’s utility functionQ or terminal decisions; observation space is the set of possible responses to
queriesR. The dynamics of the system is simplified by the fact that the state transition function is trivial:
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the underlying utility functions never change throughout the interaction process; the observation function
is the response model which maintains a probability distribution of a particular response to a given query
for a specific utility function; and, the reward function simply assigns costs to queries and expected utilities
to final decisions.

Solving the preference elicitation POMDP is a difficult task. In realistic situations, the state space is
continuous and multi-dimensional, so standard methods forsolving finite-state POMDPs are no longer
applicable. Boutilier [2002] presents a value-iteration based method that exploits the special structure
inherent in the preference elicitation process to deal withparameterized belief states over the continuous
state space; belief states are represented by truncated Gaussian or uniform mixture models. With standard
gamble comparison queries that “slice” the density vertically (“Is utility of outcome x greater thanp?),
updated distributions remain conjugate to the prior. The POMDP is solved by approximating the value
function using asynchronous value iteration.

The preference POMDP can also be solved using policy-based methods. Braziunas and Boutilier [2004]
describe an algorithm BBSLS that performs stochastic localsearch in the space of finite state policy con-
trollers. In the case of continuous utility functions, it ispossible tosamplea number of states (utility
functions) at each step, and calculate the observation and reward functions for the sampled states. The
results for a very small preference elicitation problem from [Boutilier, 2002] provide the proof-of-concept
verification of the policy-based approach. There is a lot of room for future research in this area as POMDP-
based methods so far can only solve unrealistically small problems.
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