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1 Introduction

This is a survey of preference (or utility) elicitation fromncomputer scientist’s perspective. Preference
elicitation is viewed as a process of extracting informatidout user preferences to the extent necessary
to make good or even optimal decisions. Devising effectiigitation strategies would facilitate building
autonomous agents that can act on behalf of a user.

Artificial intelligence researchers have always been é#terd in developing intelligent decision aids
with applications ranging from critical financial, medicahd logistics domains to low-stakes processes,
such as product recommendation or automated software coafiign. Decision theory provides solutions
given the system dynamics and outcome utilities. Howe\sar;, utilities are often unknown and vary more
widely than decision dynamics. Since obtaining full prefezes is usually infeasible, this presents a seri-
ous problem to the deployment of intelligent agents thaterddcisions or recommendations for users with
distinct utilities. Therefore, preference elicitation@nges as one of the more important current challenges
in artificial intelligence.

In this report, we consider both historical and current apphes to preference elicitation, concentrating
on a few key aspects of the problem. We view preferenceaicit and decision making as an inseparable
sequential process. Although utility functions are harégeess, partial information of user preferences
might suffice to make good or optimal decisions. Prefereficéagion can be driven to explore utility
regions that are relevant for making decisions. On the dtlaad, knowledge of system dynamics and
action constraints helps avoid eliciting useless utilitiprmation.

In the first part of the report, we describe “classical” diecisanalysis, consider ways to represent
uncertainty over utility functions, and summarize varicugeria for decision making with partial utility
information. If uncertainty is too great to make good demisi, further preference elicitation is needed.
One issue that arises in the elicitation process is whichygteeask next. Intelligent querying strategies
steer the elicitation process according to some agreatierand should be viewed as part of the combined
preference elicitation and decision making process. Welghwote that our use of the term “query” also
encompasses more implicit interactions with a user suclthasging the presentation of a web page and
observing the link followed by a user.

The second part of the report surveys research fields wheferpnce elicitation plays a central role.
Imprecisely specified multiattribute utility theory (ISMUA) is one of the earlier attempts to consider
decision making under partial preference information asslical decision analysis. Its extensions to en-
gineering design and configuration problems have been imtfalén spurring recent interest in preference
elicitation among artificial intelligence researchers. nfoint analysis and analytical hierarchy process
(AHP) methods were developed largely in isolation in thedBedf marketing research and decision analy-
sis; nonetheless, many issues involving preferenceaicit are common. We finish by describing some
of the recent advances in preference elicitation in Al.



2 Decision theory

"Theory of Games and Economic Behavior” by [von Neumann amdgénstern, 1947]

"The Foundations of Statistics” by [Savage, 1954]

“Utility Theory for Decision Making” [Fishburn, 1970]

"Decisions with Multiple Objectives: Preferences and \é&luade-offs” [Keeney and Raiffa, 1976]
"The Foundations of Expected Utility” [Fishburn, 1982]

"Decision Theory” [French, 1986]

“Statistical decision theory” [French and Insua, 2000]

In this section we provide the background for decision-tego treatment of preferences. Decision
theory lies at the intersection of many academic disciglirestatistics, economics, psychology, game
theory, operations research, and others. Assuming a seioofa forrational behavior, it provides a theory
for modeling user preferences and making optimal decisi@sed on these preferences. The following
summary of main concepts is based on [von Neumann and Mdegend 947, Savage, 1954, Fishburn,
1970, Keeney and Raiffa, 1976, French, 1986, French an@i2000].

In the basic formulation, decision make(DM) has to select a single alternative (or actiang A
from the set of available alternatives. Antcome(or consequenger € X of the chosen action depends
on the state of the world € ©. The consequence functien A x © — X maps each action and world
state into an outcome. User preferences can be expressedayepor utility, functionv : X — R that
measures desirability of outcomes. The goal is to selecttoren € A that leads to best outcomes. If
the world state) is known, the set of outcomes is equivalent to the set ofradtéres; therefore, in such
a case, we will often use these terms interchangeably. Wheertainty over world states is quantified
probabilistically,utility theoryprescribes an action that leads to the highest expected.valu

The outcome space itself might be multidimensional. Motristing problems fall in this category,
and we survey some ways of exploiting the structure in miattgshsional outcome spaces.

2.1 Preferences under certainty

We first consider decisions under certainty. The set of eadtates now consists of a single stétand
thus each action leads to a certain outcome. Preferencesae®mes completely determine the optimal
action: a rational person would choose the action that t®suthe most preferred outcome.

Let X be a set of outcomes over which a preference relation is a@efiffee notatiorr > y means that
a persorweaklyprefers outcome to outcomey; that is, outcome: is deemed to be as good as outcome
y. Theweak preferenceelation is commonly expected to satisfy the following twmperties for the
preferences to be considenedional:

Comparability: Vx,y e X, x> yVy ==z Q)
Transitivity: Ve,y,z€ X, v -yAy=-z = x =z (2)

Weak preference is thereforeatal preorder(or weak ordej relation over the set of outcomés. It is
natural to think of weak preference as a combination oftgtrieference relatior and indifference relation
~. The statement > y means that is strictly preferred tg;; = ~ y means that: is exactly as good ag
Formally, for any two elements, y € X

T~y = s yAy =, 3)
Ty <= yirtu (4)



It follows that strict preference is a strict order s asymmetric and transitive), and indifference is an
equivalence relation( is reflexive, symmetric, and transitive).

Weak preferences can be represented compactly by a nuifericéion. Anordinal value function
v : X — R represent®r agrees withthe ordering= when for allz, y € X

v(z) Z2o(y) <= zzy. (5)

A representation theoremgives necessary and sufficient conditions under which samaétgtive rela-
tion can be represented by a numerical rankingsoale In case of weak preferences, an agreeing ordinal
value function can always be constructed if the outcome&sistfinite or countably large. IX is uncount-
ably large, then an agreeing ordinal value function exisgd only if X has a countable, order dense
subset with respect te.

Ordinal value functions are unique upgtictly increasing transformationsSuch functions are called
ordinal scalefunctions. They contain only preference ranking informatithus, it would be meaningless
to compare any linear combination of ordinal scale valuashi{ss the average or difference of outcome
values).

2.2 Preferences under uncertainty

In many settings, the consequences of an action are uncei&dern utility theory is based upon the
fundamental work of von Neumann and Morgenstern [1947]. hia theory, uncertainty is quantified
probabilistically, and a rational decision maker is capaiflexpressing preferences betwéaiteries or
probability distributions over finite set of outcomes.

A simple lottery where outcome; is realized with probability;, is conventionally denoted as

L= (p1,x1;p2, 2} ... Py Tp)- (6)

It is common to omit outcomes with zero probabilities in thddry notation. When the lottery contains
only two outcomes with positive probabilities, it will sotmees be abbreviated &9, x;1 — p,z’) =

(z,p,2").
A more general type of lottery is@ompoundottery, where the outcomes themselves are simple lotter-
ies: !’ = (p1,11;p2,15; ... pn, I},). ANy compound lottery can beducedto an equivalent simple lottery

where the final outcomes are realized with same probabkilitissing the vector notation, the reduced lot-
tery obtained frond’ is simply p11] + p2l5 + . . . + p,ls.. Animportant assumption about preferences over
lotteries is that the decision maker views any compoundiptnd its reduction as equivalent; that is, only
the ultimate probabilities of outcomes matter. It therefeuffices to consider preferences over the set of
simple lotteries.

As in the case of certainty, the rational decision maker ssiaed to have a complete and transitive
preference ranking over the set of simple lotterigs. The continuity, or Archimedeanaxiom states that
no alternative is infinitely better (or worse) than others:

Continuity: Vi1, 1z, 13 € L, (7
ll>'12>_l3 - <llapvl3>>12>_<llaqvl3>a
for somep, ¢ € (0,1).

The continuity axiom is required for existence aftdity functionu : L — R that represents the preference
relation= on simple lotteries. An additionaldependencaxiom is necessary to impose a very convenient

1y C X is order densawith respect to- if Yz, z € X such that: > z, there existy; € Y such that: > y > z. For example,
rational numbers form a countable, order dense subsetlafuegers with respect to the order.



linear structure on the utility function(-):

Independence: V4, ls,15 € L, andp € (0,1), (8)
ll - 12 = <llapal3> - <121p7 l3>

Independence axiom requires that preferences vandi, carry over to compound lotteries involving
some other lotterys.

The most important result that follows is tlegpected utilityrepresentation theorem. It states that if
and only if the weak preference relation on simple lottergegl) complete, (2) transitive, (3) satisfies
continuity axiom, and (4) satisfies independence axiom, there exists amxpectedor linear utility
functionu : L — R which represents . A utility function u(-) has the following properties:

Q) ul) >u(l') = =1, 9)
@) u({l,p, 1)) =pu(l)+ (1 —p)u(l’), VI,I"€ L, andp € [0,1].

We can identify any outcome € X with a degenerate lottedf = (1, z;0,...), where outcome:
occurs with certainty. This allows us to extend the prefeeerelation> on simple lotteries to outcomes.
The utility of outcomer is then the same as that of the corresponding degeneragylaifz) = u(I”).
Using induction and linearity of the utility functioa(-), it can be shown that the utility of any simple
lotteryl = (p1, x1; p2, x2; . . . ; Pn, T ) IS the expected value of its outcomes.

u(l) = u((p1, x1; P2, ¥2; .. ; Pny Tn)) = ZPZU(I’L) (10)
i=1

This key result allows us to represent preferences over famtenset of simple lotteries by a utility
function over a finite set of outcomes.

2.3 Multiattribute outcomes

In practice, the set of outcomes is often endowed with multidimensional structure. For eglaneach
alternative inA can be evaluated on several criteriaatiributes Under certainty, action € A maps to

a point in amultiattributespace; under uncertainty, it maps to a distribution ovenfgan that space. The
goal ofmultiattribute utility theory(MAUT) is to investigate numerical representations théiect structure

in user preferences over multiattribute spaces. [KeendyRaiffa, 1976] remains the main reference for
MAUT.

Assume a set of attribute¥;, X, ..., X,,. Each attribute is either a finite or infinite set of possible
levels, or values (attributes can be also thought of ashi@safor ease of notation we usg to refer to its
domain as well). The set of all outcom¥Es= X; x --- x X, is the Cartesian product of attribute levels.
Given anindex sef C {1,...,n}, we defineX; = x;<; X, to be the set opartial outcomesestricted to
attributes in/, andx; to be the same restriction of a specific outcamé® denotes’s complement.

If preferences over multiattribute outcomes exhibit sigfit structure, a preference relation can be
modeled more concisely, and utility functions can be deamsed intosubutility functions, defined over
subsets of attributes. The simpl@siiependence conditida calledpreferential independencdittributes
in I are preferentially independent of the remaining attribifte

(x1.y) = (x].y) for somey € X c (11)
= (x1,y) = (x},y') forally’ € X;ec.



That is, as long as attributes notirare fixed to some level, the preferences ové&; do not depend on
the setting of remaining attributes. Therefore, a statémen- x/, ceteris paribugall else being equal),
is a concise way of statingk;,y) = (x},y) forally € X;c.

Ceteris paribusgpreferential statements provide a natural language faressmg multiattribute prefer-
ences. In Alceteris paribusassumptions are central to some of thalitative decision theoriefoyle
and Thomason, 1999]. Thegic of relative desirgintroduced by Doyle et al. [1991], as well as later work
by Doyle and Wellman [1994] interpret planning goals as ifatale preference statements over models
using all-else-being-equal semantics. In a more receictgriicGeachie and Doyle [2004] provide algo-
rithms for computingrdinal value functions based on qualitatizeteris paribugpreference statements.

One issue not addressed tteris paribudogic theories was compact and efficieapresentatiorof
preferential independence statementsCR-net introduced by Boutilier et al. [1999], is a popular graph-
ical model that exploits conditional preferential indegence among attributes. To create the structure of
a CP-net, for each attribut&;, a user must indicate which other attributesparentsof X; — impact
the preferences over values of attribte Then, for each possible instantiation of the parent& gfthe
user provides a qualitative preference relation over thaagaof X;, all else being equal. Given a CP-net,
the ceteris paribus semantics inducgsaéial order over full outcomes. Besides providing a compact and
natural representation of preferences, a CPMean be used to perform preferential comparison between
full outcomes (“DoesV entailx = x'?"), partial outcome optimization (“What is the best out@given
N7?7"), and outcome ordering (“Is there some ranking in whick x’?").

While partial outcome optimization and outcome orderirg@mputationally tractable (polynomialin
the size of the network), dominance testing is more comggdtan general, answering dominance queries
is PSPACE-complete; however, polynomial algorithms eistree and polytree structured networks. An-
other complication is cyclicity: while quite natural in ¢&in settings, cyclical networks are not guaranteed
to have a satisfiable preference ranking. Because satigfiabsting can be hard, most research on CP-
nets (including complexity results mentioned before) iisitied to acyclic networks. Finally, we should
note that introduction of ceteris paribingifferencestatements can also lead to unsatisfiable networks.

CP-nets have been extended to deal with hard [Boutilier.e2@04a] and soft [Prestwich et al., 2005]
constraints. Another interesting generalization is th&r@t, which adds conditional importance relations
among variables [Brafman and Domshlak, 2002].

The idea of preferential independence extends to prefeseoeer lotteries, leading to the notion of
utility independencelet L be the set of all simple lotteries df, andL; — the set of all lotteries oiX;.
Forl € L, [ is the marginal of on X ;. User preferences faX; areutility independenof X ;¢ if prefer-
ences over marginal lotteries ovEr, when the levels oX ;¢ are fixed toy, do not depend on that fixed
levely. A graphicalUCP-netmodel [Boutilier et al., 2001] that exploits conditionaility independence
among attributes is the quantitative analogue of CP-nets.

Preference independence and utility independence alwagt/e a relationship between two comple-
mentary sets of attributes. Independencies betweenampiubsets of attributes will be discussed later,
when describing conditions for additive utility represgian. Finally, we should mention the notion of
Pareto-optimal alternatives when discussing multiattetoutcomes. Consider a set of multiattribute alter-
nativesA, such that each attribute is preferentially independetit@femaining attributes. Without loss of
generality, we can assume that preferences are monotyrimaieasing with the value of each attribute.
Then, alternativx dominates<’ if

x; = 2 fori =1,...,nwith z; > «/ for at least one. (12)

ThePareto optimal sefalso known agfficient sebr admissible sgtis the set of all nondominated alterna-



tives in A. Itis common to restrict the set alternatives to the Parptiomal set, because a Pareto-dominated
alternative cannot be optimal.

2.4 Additive utility representation

When utility or value functions have additive represeotat, many techniques of preference elicitation are
similar in both certain and uncertain settings. The terniitufunction” will be be used as a synonym for
a value function, unless explicitly noted otherwise.

Since the number of outcomes is exponential in the numbétrdfaes, specifying the utility value for
each outcome is infeasible in many practical applicatidfswever,u(-) can be expressed concisely if it
exhibits sufficient structureddditive independend&eeney and Raiffa, 1976] is one structural assumption
commonly used in practice. Under certainty, additive irefefence requires thatl subsets of attributes
be mutually preferentially independent of their complinserJnder uncertainty, the decision maker has
to be indifferent among lotteries that have same marginaksazh attribute. When additive independence
holds,u(-) can be written as a sum of single-attribstebutility functions

u(x) = Zul(xz) = Zwivi(xi). (13)
i=1 i=1

This simple factorization exploits subutility functiong «;) = w;v;(z;), which can be written as prod-
uct oflocal value functiong; andscaling factors or weights w;. The two representations — the sum of
attribute subutility functions and the sum of weighted lo@due functions — are equivalent; the weighted
representation is commonly used under the assumption thights form a simplex (i.ey", w; = 1,

w; > 0) and local value functions are normalized to be in the radgH .

If attributesz; are numerical and a value function can be written as
n
u(x) = Z i 24, (14)
=1

then itislinear. Such functions are quite commonly assumed in operati@eareh, cost-benefit analysis,
and economics. In addition to conditions required for exise of additive value functions, there is an
additional property otonstant relative tradeofbetween every pair of attributes that has to be satisfied.
A pair of attributes; andj has a constant relative tradeeff; if the decision maker is always indifferent
between some outcomeand an outcome obtained by increasingnd decreasing; in the ratiop;; : 1.
Linear functions are therefore measured on a more resgietio scale: they are unique up to scaling by
a positive constant.

While additive models are by far the most commonly used e, generalized additive indepen-
dence(GAIl) models have recently gained attention because of Huiditional flexibility (see, e.g., [Bac-
chus and Grove, 1995, Boutilier et al., 2001, 2003b, Gorszatel Perny, 2004, Boutilier et al., 2005,
Braziunas and Boutilier, 2005]). The conditions under whacGAl model provides an accurate represen-
tation of a utility function were defined by Fishburn [1967870], who introduced the mod&IGAI is a
generalization of the additive model, where independentistamong certaisubset®of attributes, rather
than individual attributes.

2Fishburn used the terinterdependent value additivitacchus and Grove [1995] dubbed the same concept GAl, velgiems
to be more commonly used in the Al literature.



Let{I,...,I,,} be a collection of nonempty subsets{df,...,n}. Also, recall that; denotes the
marginal of the lottery on the attributes id. The sets of attributes indexed by, . . ., I,,, are(generalized)
additively independeritt and only if

[(1117"'7lfm):(llllv'-'vlllm)] - lNl/v (15)

that is, if and only if the decision maker is indifferent besm two lotteries whenever their marginal
distributions onXy, , ..., X, are the same. When generalized additive independence kioddstility of
a multiattribute outcome can be written as a sum of subieslinvolving GAI subsets of attributes:

u(x) = Zuz(xh) (16)

3 Main aspects of preference elicitation

The increased interest in automated decision support tnalscent years has brought the problem of
automated preference elicitatida the forefront of research in decision analysis [Dyer,2,9%hite et al.,
1984, Salo and Hamalainen, 2001] and Al [Chajewska et1898, 2000, Boutilier, 2002]. The goal
of automated preference elicitation is to devise algorithtechniques that will guide a user through an
appropriate sequence of queries or interactions and digteremough preference information to make a
good or optimal decision.

In this section, we concentrate on a few key aspects of tHenemece elicitation problem. The previous
section dealt with various complete representations depeace information. Here, we are interested in
the actual process of acquiring such information as well aking decisions with partially elicited utility
functions. Therefore, we address issues of how to represeettainty over possible utility functions, how
to make decisions without full knowledge of user preferasnaad how to intelligently guide the elicitation
process by taking into account the cost of interaction andrg@l improvement of decision quality.

3.1 “Classical” preference elicitation

Preference (or utility) elicitatioris a process of assessing preferences or, more specifigtility; func-
tions. Utility elicitation literature is as old as utilithéory itself; first attempts to describe procedures for
evaluating utility functions date back to the 1950s. In thSsical” setting, @ecision analyst'sask is

to help elicit adecision maker'preferences. Once those preferences are extracted, tistodeanalyst
calculates an optimal course of action according to théyytheory, andrecommend# to the decision
maker [Keeney and Raiffa, 1976, Howard and Matheson, 19&hdR, 1986].

There are many techniques for evaluating utility functicared the whole process of elicitation is “as
much of an art as it is a science” [Keeney and Raiffa, 1976]laasical approach, involving an interaction
between the decision analyst and the decision maker, ystalisists of five steps [Keeney and Raiffa,
1976, Farquhar, 1984]. During tlmeparation for assessmerthe DM is acquainted with the decision
problem, possible outcomes or attributes, and variousctéspéthe elicitation procedure. The next stage is
identification of relevant qualitative characteristio§ DM’s preferences. This could include determining
the properties of the utility function (such as continuityneonotonicity in case of numerical attributes),
best and worst outcomes or attribute levels, and indepeedestations among attributes for structured
outcome spaces. The central part of the procedwspssification of quantitative restrictiormsmdselection
of a utility function Here, the decision analyst asks various queries, someiohwlne described below, in
an attempt to model DM’s preferences bg@mpletelyspecified utility function. Most of the approaches
described in this survey depart from the classical form @fitation because of the complexity of this



task. The last step usually involvelecks for consisten@ndsensitivity analysisWhen inconsistencies
are detected, the DM is asked to revise her preferences. Gdlen§jsensitivity analysis is to check the
sensitivity of the output (which, in most cases, is the denisscommended by the decision analyst) to the
inputs — the utility model and DM'’s responses.

3.1.1 Query types

The nature of queries is an integral part of the preferenicgatlon problem. Some queries are easy
to answer, but do not provide much information; and, vicesaginformative queries are often costly.
Another tradeoff to consider is the complexity of selectihg right query versus its potential usefulness.
Such aspects of preference elicitation dependuery types

We survey some queries that are commonly used in decisidpsééand describe their main charac-
teristics. “Global” queries are applicable to situatiortsane either the set of outcomes does not have any
structure, or, in case of multiattribute problems, thaicture is ignored and only full, ajlobal, outcomes
are considered. In most multiattribute problems, peophenc@aningfully compare outcomes with no more
than five or six attributes [Green and Srinivasan, 1978].r&toee, most of the global queries have “local”
counterparts that apply to a subset of attributes.

We assume that preferences over the set of outcathean be expressed by a utility functian-),
and consider queries that help assess this function. yJiiliictions are unique up to positive affine trans-
formations; therefore, ifi(-) represents the preference relationthen so does’(-) = au(-) + b, with
a € R™ b € R. Without loss of generality, we can therefore normalize atility function to lie between
0 and 1.

Order comparison Order queriesare very simple queries that ask the user to compare a pdieofia-
tivesz andy; the user might prefer to y, y to x, or be indifferent between the two. Such queries are very
common in practice (they are central in ISMAUT and conjoimalgsis, for example) and usually require
little cognitive effort from the user. Unfortunately, oftéhey are not too informative.

More complicated comparison queries ask the user to picknibet preferred alternative from the set
of k alternatives. This rather easy task actually providesl preference relations (the selected alternative
is preferred to all remaining choices), and is widely usedhaice-based conjoint analysis. At the most
extreme, aotal rankingquery expects the user to rank all specified alternativesyaring such a query
would provide preference information relating every pdialbernatives.

Most other utility elicitation queries involve degenerkteries, orgambleswith only two outcomes.
As before, we use abbreviated notati@n p, ') for a lottery wherex occurs with probabilityp andz’
occurs with probability Ip. We consider a general query expressienp, ') = y, where everything
except one item is specified, and the user is asked to proveealue of the item that would make the
expression true. In the expressiang’, y are outcomes ik, p is a probability, and> is either- or
<3, The following terminology and classification follows [[ahar, 1984], who describes queries for all
possible combinations of known and unknown quantities égbery expression, as well as more general
gueries involving two gambles.

Probability equivalence Probability equivalence queries elicit an indifferencelability p for which

(x,p,2') ~ y. In astandard gamble case, wher 2" andz’ = =+, the query simply asks to specify the
utility of y, and is therefore sometimes calledigect utility query While such queries have been used in
research papers [Keeney and Raiffa, 1976, Gonzales ang,R&0¥4], it is unlikely that users can provide

30r, more generally, one of the three preference relations and <.



exact utility values for outcomes in real-world situatio@ne possible generalization is to ask bamunds
on the utility value; these bounds can then be narrowed bingdlkinary comparison queries described
below [Boutilier et al., 2003b].

Preference comparison In a preference comparison between a ganible, 2’) and a sure outcomg
a user is asked to specify a relation ¢r <) that holds between the two. When the gamble is a standard
gambleu((z ", p, 21)) = p, and the query becomes equivalent to«ilg) > p?” with possible{yes, no}
response$.Such query is called standard gamble comparison query

Standard gamble comparison queries are common in classcalion analysis literature [Keeney and
Raiffa, 1976]. More recently, such queries have been use@Hajewska and Koller [2000], Boutilier
[2002], Wang and Boutilier [2003], Boutilier et al. [2003BQ05], Braziunas and Boutilier [2005], and
others.

Implicit queries  Until now, we assumed that a query is an explicit questiorgdy the decision support
system, and a response is a user’s reaction to the query.ygoweieries and responses can be much more
general. The system could pose “implicit” queries by chagghe user environment (such as options
available on the web page), and observing the user’s beh@wiks followed, time spent on the page, etc.).
Or, the user can be asked to view a fragment of some actiooypalnd asked to critique the actions. A
related theoretical framework isverse reinforcement learningNg and Russell, 2000, Chajewska et al.,
2001]. The goal is to recover the reward function (prefeeshof an agent by observing execution of an
optimal policy.

The concept ofevealed preferenca economics [Mas-Colell et al., 1995] is also related totthpc of
implicit queries. Here, the emphasis is on descriptivdyaathan prescriptive, aspects of human decision
making. Observable choices that people make faced with @mogaic decision provide the primary basis
for modeling their behavior. A preference relation doesaxata priori, but could bederived(or revealed)
given observed choices that follow certain axioms of ragliin

3.1.2 Multiattribute elicitation

All the techniques described above could be also employesiniplify utility elicitation of structured
outcomes. To illustrate the main concepts, we considerake of eliciting an additive utility function

u(x) = Zui(xi) = wai(%L (17)
i=1 =1

whereu; (z;) are subutility functions that can be written as a produtocél value functions; andscaling
factors orweights w;.

The assumed utility independence among attributes alléisisagion to proceedocally: specifically,
eachwv;(-) can be elicited independently of other attribute valuesgisiny of the techniques described
above. Since attributes are preferentially independeatth ettribute’s best and worst levels (we shall
call themanchor levely can be determined separately. et andz;- denote the best and worst levels,
respectively, of attributé. Local value functions;(-) can be determined by locally measuring values of
attribute levels with respect to the two anchor levels. Whatains is to bring all the local value scales
to the common global utility scale. Essentially, we neednid the true utility of all “anchor” outcomes
x] andz} relative to some default outcome (it is customary to choose the worst outcome as default
outcome, and set its utility to 0). Then, elicitingz, ,x%) = u;(z]) andu(z;, x%) = wu;(z;) for

4We should note that despite the equivalence, comparing @omey and a standard lotteri, p, 2’) might be psychologically
easier than providing a response regarding the utilityevaliy,.



all attributes would ensure consistent scaling of subyfilinctions. Because additive utility functions are
unigue up to positive affine transformations, it is usualiglaned that both the global utility functions
and local value functions are scaled to lie between 0 ande wisights are also normalized such that
w; > 0andd_ w; = 1. In anormalized additive utility function, scaling facsar;, which reflect attribute
contributions to the overall utility function, are simplygeal tou,(z, ).

The scaling factors can be determined by asking utility gseinvolving full outcome lotteries. The
simplest way to elicitv; is to find the utility of(z," , x*,) for all i:

Wi = u(x;r,xf‘c) (18)

More generally, we need — 1 independent linear equations involving the unknown sgationstants.
Such equations could be chosen in a manner that reducesghitiw® burden of the DM (for example, by
carefully choosing queries that do not involve extremelatte values).

More general multiattribute utility functions, such as tiplicative or GAI, can also be elicited using
ideas of local value function elicitation and global scglifrishburn, 1967b, Keeney and Raiffa, 1976,
Fishburn, 1977, Braziunas and Boutilier, 2005].

3.1.3 Problems with the classical paradigm

Complete preference information is often unattainableraciice. In many realistic domains where the
outcome space is large, it is unreasonable to expect a upeovae preference information about every
outcome. In multiattribute settings with more than, sawy, atributes, complete preference elicitation
becomes virtually impossible, as the number of alternativexponential in the number of attributes.

Elicitation of quantitative utilities brings additionaifficulties. Queries involving numbers and proba-
bilities are cognitively hard to answer; most users are rpegs and therefore require preliminary train-
ing. Real case studies often provide evidence of incomgistsponses, errors, and various forms of biases.
Eliciting preferences might be costly, too; costs can benitag (hours of human effort in answering ques-
tionnaires), computational (calculating a value of certalternative might involve solving complicated
optimization problems or running simulations), financiairihg a team of experts to analyze potential
business strategies), and others.

Furthermore, from the Al perspective, preference elictapresents a “bottleneck” for designing auto-
mated decision aids ranging from critical financial, melliaad logistics domains to low-stakes processes,
such as product recommendation or automated software coafiign. For making optimal decisions, we
need to know both the decision dynamics and outcome usilitiemany situations, the dynamics is known
(elicitation and representation of complex probabilitydets is a well-researched area of Al). However,
user preferences are often unknown, and, furthermore,\thgyconsiderably from user to user (while
the system dynamics is often fixed for all users). Designiifecve preference elicitation techniques is
therefore an important problem facing Al.

When costs of elicitation are taken in to account, it becoohess that decisions might have to be made
with partial preference information, if elicitation costrt to exceed potential improvement of decisions.
Viewing utility elicitation as an integral part of the deicis process is a promising paradigm for tackling
the preference elicitation problem.

3.2 Decisions with partial preference information

If the utility function is not fully known and further eliation not possible, what criteria should be used
for making good decisions with available information? hrisiout that criteria proposed for dealing with
state uncertainty in classical decision theory (such asmax expected utility, minimax regret, maximin)
can be applied to situations where utility functions thelwess are uncertain. The analogy extends to
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both common representations of utility function uncettgirBayesian, where we can keep track of the
probability distribution over possible utility functionand strict uncertainty, defined by the sefexdisible
utility functions.

3.2.1 Strict uncertainty

“UCP-Networks: A Directed Graphical Representation of @itanal Utilities” [Boutilier et al., 2001]
“Preference Ratios in Multiattribute Evaluation (PRIMEPalo and Hamalainen, 2001]

“Preference programming” [Salo and Hamalainen, 2004]

“Cooperative Negotiation in Autonomic Systems using Inoeatal Utility Elicitation” [Boutilier et al., 2003a]
"Incremental Utility Elicitation with the Minimax Regret &ision Criterion” [Wang and Boutilier, 2003]

Under strict uncertainty, knowledge about a user’s utilityction is characterized by the feasible utility
setU. This set is updated (reduced) when relevant preferenoenation is received during an elicitation
process. The following is a non-exhaustive list of decigigteria that could be used for making decisions
with partial utility information under strict uncertaintyhe set of outcomes i&, and the goal is to choose
the best alternative™ when the set of feasible utility functionsis.

Maximin return ~ Without distributional information about the set of possittility functionsU, it might
seem reasonable to select an outcome whose worst-caseissighest:
. = i : 19
2" = arg max min u(x) (29)
Maximindecision is sometimes calledbustbecause it provides ax postsecurity guarantee. Maximin

was proposed by Wald [1950], and mentioned by Salo and nei [2004] for the case of uncertain
utilities.

Hurwicz’s optimism-pessimism index Maximin return is a pessimistic criterion, because the sleni
maker prepares for the worst realization of the utility ftime. Maximax returncriterion is the optimistic
counterpart to maximin. Supposing that maximin and maxiar@too extreme, Hurwitz proposed to use
a weighted combination of the minimum and maximum possibleaes [French, 1986]. For the case of
strict uncertainty over utility functions, this criteriavould choose

- ' 1- 20

o* = argmax | aminu(z) + (1 - a) maxu()| (20)
wherea is theoptimism-pessimism index the decision maker. Hurwicz’'s optimism-pessimism ciite
generalizes minimax and maximax, as well asdéetral value<riterion favored by Salo and Hamalainen
[2001]. Central values rule prescribes an outcome whosepmiiot of the feasible utility interval is largest,
which is equivalent to setting the optimism-pessimism indeo 0.5.

Minimax regret Minimax regret criterion was first described by Savage []19%1he context of uncer-
tainty over world states, and advocated by Boutilier et200[L] and Salo and Hamalainen [2001] for robust
decision making with uncertain utility functions. The maitea is to compare decisions feachstate of
uncertainty. Thenaximum regrebf choosingz is M R(z,U) = max, max, [u(z’) — u(x)]. Minimax
regret optimal decision minimizes the worst-case loss watpect to possible realizations of the utility
function:

“ = arg min M = argmi ) — u(@)]. 21
z” = argmin R(z,U) argmin max max [u(z") — u(x)] (21)
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Various applications of decision making with minimax regreterion have been researched by Boutilier
et al. [2001, 2003a,b], Wang and Boutilier [2003], Boutik al. [2004b, 2005], Patrascu et al. [2005].

The largest drawback of this criterion is the failure tosfgttheprinciple of independence of irrelevant
alternatives According to this principle, the ranking between two altgives should be independent of
other available alternatives (for example, the violatidrthis principle could result in a situation where
x = y if option z is available, and; = = otherwise). We should note, however, that the principle of
independence of irrelevant alternatives is by no meansusally accepted as a prerequisite for rational
decision making.

Principle of Insufficient Reason This criterion dates back to Pierre Laplace and Jacob Bdineho
maintained that complete lack of knowledge about the liad of world states should be equivalent to
all states having equal probability. Therefore, followihgs principle of insufficient reasqran optimal
decision maximizes the mean value of possible outcomes:

2" = argmax Ejey [u(z)], (22)

where ther is the uniform distribution ovet/. This criterion is mentioned by Salo and Hamalainen
[2001] ascentral weightgdecision rule, and is implicitly employed by lyengar et &001], Ghosh and
Kalagnanam [2003], Toubia et al. [2004], where uncertaivigr additive utility functions is characterized
by linear constraints on attribute weights. The “centerttad weight polytope could be its actual mass
center (i.e., the mean under uniform distribution), or s@apjroximation thereof — a point that minimizes
maximal distance to constraint hyperplanes, the centebofiading ellipsoid, or the average of uniformly
sampled points from inside the region.

Acceptability index Finally, there are methods that recommend choosing amatiee based on the set
size of supporting utility functions. Lahdelma et al. [1988roducestochastic multiobjective acceptabil-
ity analysis(SMAA), which applies to settings where uncertainty oveditide utility functions can be
described by linear constraints on the- 1 dimensional weight simplel’. Each alternative is associated
with a region ofi¥ in which it is optimal. Alternatives are ranked accordingtweptability indexwhich

is the normalized volume of the weight region in which it idiogal. An alternative with the highest accept-
ability index is in some sense most likely to be optimal. Llke minimax regret criterion, the acceptability
index criterion does not satisfy the principle of indepamzkeof irrelevant alternatives.

Various criteria for decision making under strict uncertgican be grouped into categories based on
their general properties. Maximax, maximin, and centrhles(i.e., optimism-pessimism index) are based
on extreme possible values of outcomes. Center-basedaiiiek a “representative” point in the space
of feasible utilities. Finally, minimax regret is qualitagly different from the other criteria because it
considers pairwise value differences between outcomes.

Unfortunately, different decision rules might prescribiéetlent alternatives. The choice of a decision
rule under strict uncertainty should be carefully consedebby the decision maker before the elicitation
process. French [1986] provides an extensive discussidrcatique of various decision criteria under
strict uncertainty.
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3.2.2 Bayesian uncertainty

“Adaptive Utility” [Cyert and de Groot, 1979]

“Decision Making with an Uncertain Utility Function” [de Got, 1983].

"Utilities as Random Variables: Density Estimation anduture Discovery” [Chajewska and Koller, 2000]
"Making Rational Decisions Using Adaptive Utility Elicitian” [Chajewska et al., 2000]

"A POMDP Formulation of Preference Elicitation ProblemBbjutilier, 2002]

“On the Foundations dExpectedExpected Utility” [Boutilier, 2003]

“Local Utility Elicitation in GAI Models” [Braziunas and Batilier, 2005]

A true Bayesian would likely reject the very notion of stugtcertainty. An optimal decision is simply
the one that maximizes expected value, where expectatitaken with respect to a prior probability
distributionr over the set of feasible utilitiefs:°

x* = arg max Ejcylu(x)] = arg max EU(z,7), (23)
whereEU (z, ) is the expected utility of outcome whenr is the probability distribution over utilities.
In the case of additional uncertainty over world states,gbal is to maximizeexpectedexpected utility
[Boutilier, 2003].

While most recent work on decision making using distribagiamver utility functions has been done
within the Al community [Chajewska and Koller, 2000, Chagha et al., 2000, Boutilier, 2002, Braziunas
and Boutilier, 2005], the origins of this approach can bedthback to much earlier research in game theory
and decision theory. Cyert and de Groot [1979] and de Groa83]propose the concept aflaptive
utility, where a decision maker does not fully know her own utilitpdtion until a decision is made.
Uncertainty is quantified as a probability distribution pudlity function parameters. The distribution is
updated by comparing expected utility of an outcome vertsusdtual utility, which becomes known after
the decision is made. Weber [1987] also discusses usinggtmns over utility functions as a possible
criterion for decision making with incomplete preferennformation. In a related context, probabilistic
modeling of possible payoff functions provides the founatato the well-established field of Bayesian
games [Harsanyi, 1967, 1968].

Boutilier [2003] investigates the conditions under whithsi reasonable to model uncertainty over
functions measured on the interval scale. By appealingaddhndational axioms of utility theory, it can
be shown that the functions are required toeliemum equivalente., they have to share the same best
and worst outcomes.

Animportantissue in the Bayesian approach to modelingraicgy over utility functions is the choice
of prior probability distributions. Ideally, the probaibyi model would be closed under updates (otherwise,
it needs to be refit after each response) and flexible enougtottel arbitrary prior beliefs. Mixtures
of Gaussians [Chajewska et al., 2000], mixtures of trurtt&aussians [Boutilier, 2002], mixtures of
uniforms [Boutilier, 2002, Wang and Boutilier, 2003, Brazas and Boutilier, 2005], and Beta distributions
Abbas [2004] are among possibilities proposed in the liteea Priors can also be learned from data —
Chajewska et al. [1998] describe a way to cluster utilityclions using a database of utilities from a
medical domain.

3.3 Query selection criteria

A central issue in preference elicitation is the problem bfali query to ask at each stage of the process.
The value of a query is generally determined by combining/éiiees of possible situations resulting from

SWith a prior over utilities, the same decision also mininsiexpected regret.
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user responses. Similar to decision making with incompteét@mation, query selection is driven by the

ultimate goals of the decision support system. Query delectiteria include fastest reduction of minimax

regret or uncertainty, or achieving optimal tradeoff bedwelicitation costs and predicted improvementin
decision quality.

3.3.1 Max regret reduction

"Incremental Utility Elicitation with the Minimax Regret &€ision Criterion” [Wang and Boutilier, 2003]
“Cooperative Negotiation in Autonomic Systems using Inoeatal Utility Elicitation” [Boutilier et al., 2003a]
“New Approaches to Optimization and Utility Elicitation Autonomic Computing” [Patrascu et al., 2005]
"Eliciting Bid Taker Non-price Preferences in (Combinaaby Auctions” [Boutilier et al., 2004b]
"Constraint-based Optimization with the Minimax DecisiOriterion” [Boutilier et al., 2003b]
“Regret-based Utility Elicitation in Constraint-baseddion Problems” [Boutilier et al., 2005]

The minimax regret decision criterion provides bounds @nhality of the decision made under strict
uncertainty. When the potential regret associated with e&cision is too high, more utility information
needs to be elicited. A decision support system can querygbeuntil the minimax regret reaches some
acceptable level, elicitation costs become too high, oresother termination criterion is met.

Each possible response to a utility query results in a nevsidacsituation with a new level of minimax
regret (the level of regret cannot increase with more infitram). The problem is to estimate the value
of a query based on the value of possible responses. For éxaome could select the query with the
best worst-case response, or the query with the maximunageesr expected improvement [Wang and
Boutilier, 2003].

Minimax regret reduction queries are also used in the audénoomputing scenario [Boutilier et al.,
2003a, Patrascu et al., 2005], eliciting values of nonepfeatures in combinatorial auctions [Boutilier
et al., 2004b], and optimizing constrained configuratidwytilier et al., 2003b, 2005]. A more detailed
description of these methods is postponed till Sectiorl4.6.

3.3.2 Uncertainty reduction

There is a variety of methods from diverse research areals agiconjoint analysis and ISMAUT (see Sec-
tions 4.3 and 4.4), whose central idea is to choose quei@satuce the uncertainty over utility functions
as much as possible. The set of possible utility functiorimmonly represented as a convex polytope
in the space of utility function parameters. Each querydissthe polytope by adding a linear constraint.
Since the responses are not known beforehand, variousstiesiare used to choose the next query. Such
heuristics consider the size parity of volumes [lyengarlet2®01], as well as their shape [Ghosh and
Kalagnanam, 2003, Toubia et al., 2004].

Abbas [2004] proposes an algorithm for query selectiontirasions where uncertainty over unidimen-
sional utility functions is quantified probabilisticallit each stage, a myopically optimal query provides
the largest reduction in the entropy of the joint distribatover utility values. Holloway and White [2003]
consider sequentially optimal querying policies for a dabg of problems with additive utility functions
and small sets of alternatives. The process is modeled ascaabpPOMDP (see Section 4.3 below for a
more detailed description).

While such methods strive to minimize the number of quethesy fail to consider the tradeoff between
elicitation costs and improvement in decision quality.sTisithe topic of the next section.
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3.3.3 Expected value of information

If uncertainty over utilities is quantified probabilistiiyathe value of a query can be computed by consid-
ering the values of updated belief states (one for eachlpessisponse), and weighting those values by the
probability of corresponding responses. If a sequence efigsican be asked, finding the best elicitation
policy is a sequential decision process, providing an ogitinadeoff between query costs (the burden of
elicitation) and potentially better decisions due to add#l information. However, such a policy is very
difficult to compute; therefore, we first describe a myopipraach to choosing the next query.

Myopic EVOI  Because of computational complexity of determining fullsaof a query, it is common

to use myopiexpected value of informatiqiEVOI) to determine appropriate queries [Chajewska et al.,
2000]. To reduce uncertainty about utility functions, tleeidion support system can ask questions about
the user’s preferences. We will assume a finite set of a\laltalhlenesQ = {q1,...,qn}, and, for each
query¢; — a set of possible useesponses?’ = {ri,...,r? }. Responses to queries depend on the
true user utility functioru, but might be noisy. A general model that fits many realistienarios is a
probabilisticresponse mode‘Pr( '|qz, u), providing the probability of respons@f to the queryy; when

the utility function isu. Pr(r}|q;, 7) will denote the probability of respons@ with respect to the density

« over utility functions:

Pr(ri|gi,m) = / Pr(rgs, wym(u)du. (24)
uwelU

Elicitation of preferences takes time, imposes cognitiuelbn on users, and might involve considerable
computational and financial expense. Such factors can belewty assigning each quepyaquery cost
¢;.% In a Bayesian formulation of the elicitation process, expegains in decision quality should outweigh
elicitation costs.

Let's recall thatEU (x, ) is the expected utility of outcome whenr is the probability distribution
over utilities (see Eq. 23). Let/ EU (w) be themaximum expected utiligf belief stater:

MEU(r) = meza%EU(:v,w). (25)
A response- to a queryqg provides information about the true utility function andadiges our current
beliefsw according to the Bayes’ rule:

7" (u) = w(ulr) = % (26)

Thus, after response the maximum expected utility i3/ EU (="). To calculate the value of a query, the
M EU s of its possible responses should be weighed accordingitolittelihood. Theexpected posterior
utility of the queryy; is:

EPU(gi,m) = Y Pr(rlgi, =) MEU(x"). (27)

reR?

Theexpected value of informatiafthe queryy; is its expected posterior utility minus its current maximum
expected utility:

EVOI(q;,m) = EPU(q;,7) — MEU (7). (28)

EVOI of the query; denotes the gain in expected value of the ultimate decigianyopically optimal
guerying strategy would always select a query whose EVOildatgst, after accounting for query costs. A

6More generally, costs could depend on the true utility fismgtor be associated with responses.
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sequentially optimastrategy would consider the value of future queries whenpmding the EVOI of the
current query. Even though some query might be very costbhort term, it might be able to direct the
elicitation process to good regions (in terms of decisioality) of the utility space which might otherwise
remain unexplored by the myopic EVOI strategy. The myopi©Espproach is more popular in practice
(usedin [Chajewska and Koller, 2000, Braziunas and Beutil005]) because computational requirements
of sequential EVOI are often prohibitive.

Sequential EVOI An obvious way to minimize the shortcomings of myopic quegystrategies is to
perform a multistage lookahead. Unfortunately, such mtalje search would have to be computed online
(during the execution of the policy), which might seriouligit its benefits.

Another approach is to compute a sequentially optimal gabiffline. Boutilier [2002] introduces
the concept of preference elicitation as a POMDP that takiesdccount the value of future questions
when determining the value of the current question. As lefae assume a system that makes decisions
on behalf of a user; such a system has a fixed set of choicésnsctecommendations) whose effects
are generally known precisely or can be modeled stochégticBhe system interacts with a user in a
sequential way; at each step it either asks a question, errdigtes that it has enough information about a
user’s utility function to make a decision. As each querydmssociated costs, the model allows the system
to construct an optimal interaction policy which takes iatzount the trade-off between interaction costs
and the value of provided information. The approach is dised in more detail in Section 4.6.2.

4 Research on preference elicitation

In this section, we survey several fields in decision ang)ysbnsumer research, and Al, where prefer-
ence elicitation plays a central role. Imprecisely spetifrailtiattribute utility theory (ISMAUT) is one of
the earlier attempts to consider decision making undeigbg@reference information in classical decision
analysis. Its extensions to engineering design and comfligurproblems have been influential in spurring
recent interest in preference elicitation among artificisdlligence researchers. Conjoint analysis and ana-
lytical hierarchy process (AHP) methods that were devaldamyely in isolation in the fields of marketing
research and decision analysis also attempt to solve preferelicitation issues of general interest. We
finish by providing an overview of some recent work in prefexelicitation in Al.

4.1 |ISMAUT

“Screening of Multiattribute Alternatives” [Sarin, 1977]

“An interactive procedure for aiding multiattribute aletive selection” [White et al., 1983].

"A Model of Multiattribute Decisionmaking and Trade-off \igiit Determination under Uncertainty” [White et g
1984]

“Ranking With Partial Information: A Method and an Appligat” [Kirkwood and Sarin, 1985]

“Partial Information, Dominance, and Potential Optimalit Multiattribute Utility Theory” [Hazen, 1986]

“A penalty function approach to alternative pairwise conguns in ISMAUT” [Anandalingam and White, 1993]

One of the earlier attempts to consider decision making updgial preference information is the
work on imprecisely specified multiattribute utility thegrgr ISMAUT, by White et al. [1983, 1984],
Anandalingam and White [1993]. A similar framework was pyepd before by Fishburn [1964] and Sarin
[1977]. Related research by, e.g., Kirkwood and Sarin [1985zen [1986], Weber [1987], deals with
similar issues, even though it is not customarily called F&M.
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ISMAUT applies to situations in which the utility functioran be written in a normalized additive
form, i.e., as a sum of weighted local value functions forheaitribute. The decision maker has to choose
from a finite set of multiattribute alternatives. The goall 8MAUT is to restrict the set of alternatives
to those that are not dominated by any other alternativegthas the prior information on local value
functions, weights, and comparisons between pairs ofretees. If the reduced alternative set is too big
for the decision maker to make a choice, we should asseds/idoa functions or weights more accurately,
reduce the set of nondominated alternatives, and contiraiprocess as long as is necessary for optimal
alternative selection. An obvious drawback of this schesnthé lack of an intelligent query selection
strategy to drive the elicitation process. In the followsgtion, we discuss the research that considers
querying strategies in ISMAUT-like elicitation settings.

Let A be the set of sizen of available multiattribute alternatives, whose genel&reent isx. Each
alternativex is a point in ann-dimensional consequence spase= (1, z2,...,x,). The preference
relation overA can be expressed by an additive utility function:

u(x) = Zwi vi(x;) = w-v(x),

wherew is a vector of weights, and(x) is a vector of local value function values of alternative

The model can incorporate three types of prior informatmmrésponses to utility queries): compar-
ison of attribute weightsv;, information about local value functions(-), expressed by sets of linear
inequalities, and pairwise preference statements abtauhatives in the sed. In particular,

1 Knowledge about relative importance of the tradeoff wesdHColor is more important than screen
size”) or bounds on their values (“This attribute’s weighbetween 0.5 and 1%)allows us to define
afeasible subsét’ C {w € R" : w; > 0,) . w; = 1} of all possible weights via linear constraints.

2 Similar to statements about weights, ISMAUT allows us taelanformation about individual local
value functions by means of linear constraints. If the thitdbute is computer’s speed, and the user
prefers faster computers, ceteris paribus, thgtast') > vs('slow’). The user might also be able to
provide bounds for local values of specific attribute levelg.,vs('fast’) € [0.3;0.7]). Such linear
constraints define the spadés . . ., V,, of possible local value functions.

3 Finally, even if the user is unable to select the best atam right away, she might be able to
compare some pairs of alternatives. Liegbe the set of such comparisons: for edgch J there is a
pair (%/,x7) € A x A if and only if the user has specified that = x/. The set of comparisons
can be used to impose further restrictions on the weightesgeerause < J impliesw - v(x7) >
w - v(x7).

All this prior information defines the s&t of feasible weights and local value functions. More pre-
cisely, the tupl€w, vy, ...,v,) € C if and only if
wew,
vi(-) €V, foralli =1,...,n,
w - [v(&)) = v(x?)] > 0, forall j € J.

7Although many authors talk about the “importance” of atités, we should be aware that weights are nothing more than sc
ing factors. The statements about weights are nonetheleasingful: w; > w; means that outcomen;r,xj-c) is preferred to

(:ch,lec), andw; € [0.5; 1] means that(z;" , x:¢.) € [0.5; 1].
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The additive structure of utility functions allows us to uke setC' to eliminate dominated alternatives.
First, we define the binary relatiadR(C') C A x A as follows:

(%,x) € R(C) <= w-[v(x)—v(x)] >0, forall (w,vy,...,v,) € C.

This meansthat = x if and only if (x,x) € R(C).2 Whenw-v(x') = w-v(x) forall (w, vy, ...,v,) € C,
thenx andx’ are said to be equal (with respect?.

The set ofnondominatedalternativesN D(C') can be computed using the relati®{C): x is non-
dominated if there is no nonequal alternativesuch that(x,x) € R(C). We should note that without
prior information,C' contains all possible weights and value functions, Aid(C) is equal to the Pareto-
optimal set of alternativesV D(C') is important because the most preferred alternative has ioib The
goal of ISMAUT is to reduce the set of nondominated altexatiuntil the user can select the optimal one.
More information about the possible local value functiond aveights reduces the s€t, increases the
binary relationR(C'), and reduces the size 8fD(C):

CCC" = R(C') CR(C)ANND(C) C ND(C").

The setV D(C') can be computed froR(C') in polynomial time in size of the alternative sétbecause
for each alternative, we need to check that no other altemiatpreferred. The central computational task
is therefore to computg(C) from C. Recall thatx,x) € R(C) ifand only if w - [v(x) — v(x)] > 0, for
all (w,vq,...,v,) € C. This amounts to verifying that

min w - [v(x) —v(x)] > 0. (29)

If J = 0, then there is no prior information about pairwise prefesmnbetween alternatives; the con-
straint set”' contains all the weights ifi’, and value functions iy, ..., V,,. In this case, researched in
White et al. [1983], Eq. 29 becomes

wew v; €V

min <Z w; min [v;(2;) — Uz(xl)]> > 0. (30)

i=1

This problem can be solved in a straightforward mannet by1 linear programs.

Adding constraints to the set complicates the solution, because the weight and valuditmcon-
straints get tied together by comparisons of global altares. Anandalingam and White [1993] propose
a general penalty function method for determining membprshR(C'). However, since such methods
often suffer from slow convergence and ill-conditioningd€se.g., [Bazaraa and Shetty, 1979]), two special
cases of approximating(C') were analyzed by White et al. [1984], and Anandalingam and&\{h993].

Let C™" be a set of tupleéw, vy, ..., v,) such thatw € W, v; € V;, and for allj € J,

N o (20)] >
sz Ur?nelgb vi(&]) — vi(x])] > 0. (31)

Similarly, letC™* be a set of tupleéw, vy, ..., v,) such thatw € W, v; € V;, andforallj € J,

Zwl max [v;(27) — v ()] > 0. (32)

v, €V

8In this case, the relatior denotes derived, or provable preference, rather than™preference.
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Inequalities 31 and 32 impose linear constraints on weidttsrefore, solving foR (C™") and R(C™*)
is straightforward, since this case is similar to the- () case described above.

How canC™" andC™%* be used to approximat@(C)? From Eq. 31 and 32, we note th@t*" C
C C C™e and thereforeR(C™*) C R(C) C R(C™™). Without computingR(C), we can infer
two facts:

Therefore, it is only whelix, x) ¢ R(C™) or (x,x) € R(C™™) that membership i?(C') needs to be
determined directly.

Hazen [1986] and Weber [1987] point out that the set of noridatad alternatives is not the same as
the set ofpotentially optimaklternatives, which is a subset dfD(C). It is possible that an alternative is
not dominated by any other alternative, but is dominated d&yllaction of alternatives (Weber [1987] calls
this mixed dominange Or, alternatively, a potentially optimal alternativavalys has a feasibleitness
utility function for which it is an optimal alternative. Whdocal value functions are known, the witness
weight vector can be found by solving a linear program.

4.2 Engineering design and configuration problems

"Multiobjective Intelligent Computer-Aided Design” [Sgk and White, 1991]
"Preference-Directed Design” [D’Ambrosio and Birminghab®95]

One field in which applications and extensions of ISMAUT hbeen proposed isngineering design
Design is a multidisciplinary area with no precise defimtié@enerally, any problem of designing a com-
plex system that has to comply to some performance requitena@d satisfy operational constraints can
be regarded as an engineering design problem. Exampleslaxcommunication networks, computer sys-
tems, bridges, etc. Some areas within engineering desig#ve tight connections to Al afd in design
(AID), knowledge-based design systgiiBDS), andintelligent computer-aided desigiCAD) [Brown
and Birmingham, 1997]. As we shall se@nfiguration desigfiwielinga and Schreiber, 1997] is a partic-
ularly relevant formalization of the problem with regardp@ference elicitation. A recent report by the
Board on Manufacturing and Engineering Design [2001] seeghe importance of the decision-theoretic
approach in engineering design.

The paper of Sykes and White [1991] omultiobjective intelligent computer-aided desi@vil CAD)
extends the ideas of ISMAUT to the problem of configuratiosigie. The design process is viewed as a
combination of the progressively acquinegferential componerand ana priori operational component
MICAD thus combines iterative capture of user preferencits the search in the constrained space of
feasible designs. Preference elicitation can be direacedrd promising (and feasible) regions of the
design space, thus avoiding the cost of wasted elicitafiflonte On the other hand, the search for optimal
designs can be substantially facilitated by preferencaimétion.

Intuitively, a configuration problem is that of “configurihg system. A decision to be taken consists
of a number of components, or aspects, which interact in éaays to produce an outcome. A typical
example is configuring a computer system from a set of commpsnre choosing a processor, compatible
memory, peripherals, etc. Possiblenfigurationsre restricted by hard feasibility constraints. The optima
configuration depends on user preferences; however, thefergnces are expressed ofeaturesor at-
tributesof configurations (odesign$. For example, a user might want a “reliable home compuvenich
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is a point in thefeature spacéor performance spagerather tharconfiguration spaceA mapping from
configuration space to feature space induces indirectigmeées over configurations.

LetT =T x ... x T, be a multiattribute configuration space, where €Bcis a set of components
to choose from. As before, the outcome, or feature, spaddwitienoted aX. Components represent
controllable aspects of a design problem, whereas configarieatures allow for a direct expression of
user preferences. Feasible configurati@isC T form a subset of the configuration space; they could be
specified by a set of rules, logical formulas, or usiogstraint satisfaction proble¢CSP) formulations.

A performance functiol? f : T — X provides a mapping from configuration space to feature space
The problem is complicated by the fact that this functjffn) might not have any useful mathematical
properties (such as continuity, monotonicity or invetiif), and might not be expressed in closed form.
Determination off (¢), ¢ € T might also be costly and require expert analysis or sinuati

The problem of engineering design can thus be summarizé&nivil given a set of components and
features, a set of operational constraints on configuratiarperformance function, and a preference re-
lation over the outcome space, find an optimal feasible cordigpn. This general problem is addressed
in [Sykes and White, 1991, D’Ambrosio and Birmingham, 1988ihg ISMAUT, and in [Boutilier et al.,
1997] using CP-nets.

Sykes and White [1991] investigate direct application dfIFJT ideas to the design process. It is
assumed that local value functions are known, so only weigitg uncertain. Information about weights can
be queried from the user in two ways, already described alf@y¢he user can provide direct information
about weights, expressed as linear constraints; (2) threcasecompare pairs of designs to induce linear
inequalities in the weight space (this requires solvingd). Preference elicitation can occur at any time
during an iterative design process. MICAD is presented a=naigl framework for interactive preference
elicitation and search in the space of designs. It is assuhmdhe search proceeds in stages, at which
a finite set of designs is available for the user to evaluat@ drucial issues are not directly addressed:
how to select a set of designs (from potentially exponentiahber of possibilities) at each stage, and what
guery selection strategy to follow when eliciting user prefces.

D’Ambrosio and Birmingham [1995] tackle the first issue. ¥Hermulate the design engineering
problem as a constrained optimization problem. The objedtinction is an incomplete value function
created by pairwise ranking a random sample of design alteas. Operational constraints are modeled
as a CSP. Therefore, CSP solution techniques, such as aiohstetwork decomposition and constraint
propagation, can be harnessed to facilitate a branch-andebsearch for optimal designs.

4.3 Extensions of ISMAUT

“Q-Eval: Evaluating Multiple Attribute Items using Quesiglyengar et al., 2001]
“Polyhedral Sampling for Multiattribute Preference Hiation” [Ghosh and Kalagnanam, 2003]
"Question Selection for Multiattribute Decision-aidinfi1olloway and White, 2003]

Classical ISMAUT is mostly concerned with narrowing the sgtlternatives to a manageable size
using partial preference information. The following papaddress an important issue of how to select
queries in a sequential elicitation process. Like in ISMAttHe additive utility function over attributes is
assumed.

The Q-Eval algorithm of lyengar et al. [2001] asks the userdmpare pairs of selected alternatives,
and uses the responses to refine the preference model. Tlevédge functions are specified precisely,

9A constraint satsifaction problem deals with finding a felsiassignment to a set of variables subject to a set of contstr
Dechter [2003] provides a detailed overview of CSP algorgtand models.
10In [Boutilier et al., 1997], the performance function isledlacausal modelbecause it is expressed by a set of logical rules.
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so utility function uncertainty is represented by lineanstaints on the weight space. Given a set of
alternatives, the authors address the issue of which pagire®ent to the user for ranking in a sequential
elicitation process. Each response to the queryx‘Igreferred tox?” adds a linear constraint which
reduces the region of feasible weights Since a response is not known beforehand, the authors atgvoc
a heuristic of choosing the query that would come closestgecting the space of feasible weights. The
rationale for this querying strategy is to shrink the spdgaossible weights as quickly as possible.

The implementation of Q-Eval employs a number of approxiomstto ensure practical online per-
formance. First, the number of alternative pairs considlésepruned based on the normal distance of
corresponding hyperplanes to the “center” of the redidn Intuitively, hyperplanes close to the center
are good candidates for bisecting the reginequally. The notion of center used throughout the paper
is that ofprime analytic centerwhich is the point that maximizes the sum of log distanceiearredun-
dant hyperplanes defining the region. In case a decisionchbs tmade with uncertain information, the
center serves as a representative weight vector. Quegiew/ére not pruned in the previous step are then
evaluated based on the volumes of the resulting polytopesh@st query leads to the most equal partition
of the weight space). The volumes are approximated by tleeddithe tightest axis-orthogonal bounding
rectangle.

Ghosh and Kalagnanam [2003] consider the same problem apds® to use sampling for determining
the center of the weight regidi. In particular, they use a hit-and-run sampling technidnag émploys a
Markovian random walk defined on the $&twith a uniform stationary distribution. The advocated gquer
ing strategy is to ask a query whose corresponding hypegptaarthogonal to the longest line segment
contained inl/. The method is quitad hog but works fast in practice.

The two query selection methods described above try to nideithe number of queries by shrinking
the region of possible weights as fast as possible. How#vey,do so myopically, without considering
the value of asequencef queries. Holloway and White [2003] present a POMDP modekéquentially
optimal elicitation in an ISMAUT-like setting, where untainty about utility functions is specified by
linear constraints on weight vectors.

The state space in this POMDP model is the (uncountablegatah of all subsets of tradeoff weights
{w > 0: > w; = 1}. Intuitively, a system is in stat®l/, if 1V is the largest region of the weight
space constrained by previous elicitation responses.oAgtare binary queries asking to compare pairs
of alternatives, and observations akes/no answers to such queries. It is assumed that there is no noise
in user responses. The observation function is the prababflgetting a responseto the query; when
the true tradeoff weight vector lies in the 3&t a uniform probability distribution over the weight space
is assumed, although more general probability models doelldccommodated. The process moves from
one state to another as the feasible weight region shrinksallinear constraints imposed by responses to
queries.

To define the cost structure, we need to introduce a notioheo$olution partition, which divides the
set of all weights into convex regions where one alternatmminates all others. Formally, i is the set
of alternatives, aolution partitionis {WV, : a € A}, where

Wo={w: w-v(xq) >wW-v(xy)Va' € A}. (33)

Elicitation goals can be encoded using the cost model.7Lbe a maximum number of queries that can
be asked (thus, we consider a finite-horizon POMDP). For ergiveight vector sét’, ¢(W, ¢) is the cost

of asking the query, and¢(W) is the terminal cost of ending up with the 3ét after all questions have
been asked. If the goal is to ask as few queries as possiblet¢ontine an optimal alternative, then we
can set(W) = 0, ¢(W,q) = 0 if there isa € A such thatV C W,, andc(W, ¢) = 1 otherwise. The
optimal policy of this POMDP will ask the fewest queries pbksuntil it finds the smallest < T' such
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that W) C W, for somea € A. One can similarly define a simple cost function for minimgithe
expected uncertainty of knowing the problem’s solutioeft questions.

Since the POMDP described above is hard to solve in the mawrgeform (although ideas from
[Boutilier, 2002] would be applicable here as well), thehewis concentrate on the case in which restrictions
on the cost function guarantee a finite, piecewise linepresentation of the POMDP value function. This
is possible if the cost function depends Bn only through a finite probability distributiop' () over
alternatives. For each € A, p"'(a) is the probability that alternative is optimal, given that the true
weight vector is inl/. Such cost functions are too restrictive for POMDPs that@htite optimal tradeoff
between elicitation costs and expected improvement insaetiquality; however, they can be used to
achieve the two goals mentioned in the previous paragtaph.

Holloway and White [2003] do not perform empirical validatiof the approach or provide a suitable
POMDP solution algorithm. Quite unrealistically, the authalso assume perfect responses to queries.
Nevertheless, it is the first attempt to describe a modeldquentially optimal query selection in ISMAUT
problems.

4.4 Conjoint analysis

“Conjoint Measurement for Quantifying Judgmental Datat¢én and Rao, 1971]

“Conjoint Analysis in Consumer Research: Issues and Okitlfggreen and Srinivasan, 1978]
“Conjoint Analysis in Marketing: New Developments with ligations for Research and Practice” [Green and
Srinivasan, 1990]

"Polyhedral Methods for Adaptive Choice-Based Conjoinafysis” [Toubia et al., 2004]
“Fast Polyhedral Adaptive Conjoint Estimation” [Toubiaatt 2003]

Since the original paper by Green and Rao [1971], conjoiatyais has become a major area in mar-
keting research? Conjoint analysis is a set of techniques for measuring amesaradeoffs among multi-
attribute products and services. Despite differencegmitmlogy and methodology, conjoint analysis and
multiattribute decision analysis (in particular, ISMAU@gal with similar issues in preference elicitation
and modeling.

The goal of conjoint analysis is to decompose consumer eées over multiattributproducts(or
profileg into component preferences over attributes in order tdiptaggregateconsumer behavior, ex-
plain preferences for current products, visualize marggtrsentation, and help design new products. Thus,
the emphasis is generally on predictive and descriptiteerahan prescriptive aspects of consumer be-
havior.

Usually, an additive utility function is assumed — the totalue of a product is the sum of partial
contributions partworthg of individual attributes feature$. Formally, lety’ = u(x’) be a specified
rating of the produck’. A general conjoint analysis model is

=1

Wherezf are input variablegy’ is a dependent output variable, ancare parameters to be estimated. Input
variables:! depend on the attributes of the produét

For example, the problem of minimizing the number of quedas be encoded by settingp"') = 0, c(p"V, q) = 0 if there
existsa € A such thap™ (a) = 1, ande(p", ¢) = 1 otherwise.
12[Green and Srinivasan, 1978] and [Green and Srinivasar)] £98 key historical surveys of conjoint analysis.

22



e For continuous attributes whose value is monotonicallygasingz; = x;. If all attributes are like
that, then the model reduces to the familiar linear valuetion u(x) = ", w; z;, and parameters
v; can be viewed as weights; .

e For continuous attributes whose local value functions abstntially nonlinear, several variables
can be used for approximation. In a case of quadratic fundtio attribute:, two = variables are
introduced: one equal to;, and the other equal to?. Such local value models are quite com-
mon in conjoint analysis (one example is tldeal-point modelwhere local preference increases
guadratically until some ideal-point level, and decreasts that).

e For discrete binary attributes with two levels andz;-, we setz; = 1if X; = 2, andz; = 0 if
X; = zj. Then an estimated parametgican be thought of as a local value of the best level;of

e Discrete attributes wittk levels are converted into — 1 binary “dummy” attributes. Constraints on
indicator variableg; are added to ensure consistency of representation.

Given preference information about whole products (sudbrdimal or cardinal product ranking, com-
parison, or preferred choice from a set of products), somme @ regression is used to find parameters that
aremost consistenwith specified preferences, which are usually aggregateeXxample, a common type
of application is to elicit preferences over full profilednga rating or ranking scale, and then estimate
attribute partworths by least-squares regression. Thenyidg assumption is that ranking or rating full
products is easier than providing attribute partworth$oag as the number of attributes is small.

Many aspects of preference elicitation considered in g®rt have their equivalents in conjoint anal-
ysis, too. Approaches are differentiated according to dalfiaction formats (i.e., “query types”), question
design (“query selection”), and parameter estimation @doces (“decision making with incomplete infor-
mation”). The most common data collection format is full fleoevaluation, where a user is asked to order
all products gtimuli) in a given set, or provide a metric rating of each stimulusc@rse, the user’s burden
grows dramatically with the size of stimulus set. Some mastiherefore employ partial profile evalua-
tions. Choice-based conjoint analygi€BC) is a popular compromise technique, where insteadniding
all profiles, a user is asked to choose the most preferreddrgiven a setMetric paired-comparisoffor-
mat asks to consider only pairs of profiles, but expects diadine answers regarding relative preferefite.

Until recently, most applications of conjoint analysisheit presented the same questions to all re-
spondents, blocked them across sets of respondents, arakaly, or adapted them based on responses
from prior respondents. Adaptive question design for iitilial respondents in the manner of ISMAUT
was first considered by Toubia et al. [2003, 2004] in metricguacomparison and CBC settings. This
new approach, termed tipolyhedral methodworks by iteratively constraining the polyhedron of fédesi
subutility (partworth) values. The attributes are disematd binary (multilevel attributes can be represented
using dummy variables), so each product is represented bjn&aip the space of attribute partworths. In
CBC, binary comparison questions result in a separatingipfane that cuts the polyhedron of feasible
subutilities. More generally, a respondent is presenteld aviset of products, and asked to choose one of
them. A choice set of sizedefinesk(k — 1)/2 possible hyperplanes; for eachio€hoices available; — 1
hyperplanes determine the new polyhedron.

In polyhedral methods, the goal is to reduce the size of taicty polyhedron as fast as possible. Ques-
tions are designed to partition the polyhedron into appnately equal parts; in addition, shape heuristics
are used to favor cuts that are perpendicular to long axase$ie problem is computationally hard, many
approximations similar to Q-Eval [lyengar et al., 2001] eaneployed. The polyhedron’s volume is approx-
imated by a bounding ellipsoid, and its center by the amabgnter. Thenk points at whichk /2 longest

13In practice, a user is usually provided with a set of qualigathoices specifying by how much producis preferable to product
y (e.g., “l like z much more than”, “I like z a little more thany”, “l like x as much ag”, etc.); these choices are then converted to
a quantitative scale.
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axes intersect the polyhedron are used to sélgubfiles for the next choice-based query. This technique
is extended to metric paired-comparison queries in Toutah §003].

Conjoint analysis and decision analysis have largely a@eal in parallel, without much interaction.
However, recent emphasis on sequential preference éhcita both fields presents opportunities for fer-
tile interaction. Conjoint analysis offers a variety of guéormats that have been validated in practice, and
many experimental domains in consumer research. Its limitainclude reliance on full profile querié&s,
which work only for products with a few (usually less than)tatiributes, common assumptions of attribute
independence, and lack of integration of preference atioih and product feasibility constraints.

4.5 Analytic hierarchy process

“A scaling method for priorities in hierarchical structat¢Saaty, 1977]

“The analytic hierarchy process” [Saaty, 1980]

"Preference Ratios in Multiattribute Evaluation (PRIME}i€itation and Decision Procedures under Incomplete
formation” [Salo and Hamalainen, 2001]

n_

Analytic hierarchy proces§AHP) is an alternative method of decision analysis dewedbpy Saaty
[1977,1980]. The main ideas of the AHP method can be expldimeomparison to additive value theory
(see [French, 1986]), although the connection betweemibeapproaches was developed well after the
original work on AHP.

The problem is to select the best alternative from the set ofultiattribute alternatives', x2, ..., x™
under certainty. Each alternative is measured agairsttributes: x* = (2%, z%,...,2%). The value
function is represented as a weighted sum of strictly pasltcal value functions;(+):

v(x') = Zwivk(x};) = Zwiv,i, (35)
k k

wherev} is the local value of théth alternative on théth attribute. The weights and local value functions
are not normalized t@; 1].

The main difference between AHP and classical decisioryaisdies in the elicitation of weights and
local value functions. Instead of direct responses reggrditribute weights and local value functions,
AHP assumes that a user can instead provide all the entritae gio-callegositive reciprocal matrices
For each attributé, the entries can be thought of as ratios of local value fonsti

1 m: oo vp /o vb/vE Lo v fol
1/r? 1 ceooEm vifol  vifuviooLo. vijol
Rk = . - : : : ) (36)
o SUREEE B
/e 1/rpm™ o0 1 oL LT A

wherery/ is theratio of local valuesv}, andv]. Besidesk attribute matrices, an additional matd is
elicited to provide information about relative importardattributes.

wy/wy  wyfwe ... wr/wy
we/wy  wo/we ... wa/wy,

R = . . . . (37)
wp /w1 wpfwe ... wy/wy,

14There are methods of conjoint analysis that do not empldypfalduct comparisons, but they are less popular and not #s we
grounded theoretically from the decision theory perspecti
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The entries ofR can be interpreted as ratios of attribute weights.

Given the entries of the positive reciprocal matrices, AlgRes the weights and local value functions
for the attributes. If the matrix entries were consistenthsderivation would amount to solving a simple
system of linear equations. In a likely case of inconsisgantties, the local value functions and weights
are estimated using one of several averaging techniqugn{e2ctor-based estimation is commonly advo-
cated). The alternatives are ultimately ranked by the tieguhdditive value function.

The key issue is eliciting the positive reciprocal matricé®r attribute matrices, the user is asked
to compare pairs of alternatives on each attrid@td=or a pair of alternatives’ andx’ compared on
attributek, the ratior)’ is 1, if x* is equallypreferred tax’, 3 —weaklypreferred, 5 —stronglypreferred,

7 — demonstrablypreferred, and 9 —absolutelypreferred. The weight matrix is elicited by a similar
process — one attribute can be “equally important”, “weaklyre important”, “strongly more important”,
“demonstrably more important”, and “absolutely more intpat” than another.

Issues such as elicitation costs, decision making withrmgete information, and query selection
criteria are as important in the AHP as in classical decigimory. Salo and Hamalainen [1995, 2001,
2004] maintain that decisions should be made with incoreplefiormation if elicitation costs outweigh
potential improvementin decision quality. Preferenceauntainty is described by bounds on value function
ratios (i.e., the entries of positive reciprocal matric&gveral decision criteria are discussed, and “central
values” approach (see Section 3.2.1) favored on the grooineisipirical simulations. Query selection is
not addressed.

AHP is a controversial method (see, e.g., [French, 198& &adl Hamalainen, 1997] for some crit-
icisms of AHP). While quite popular in practic¢é,it is not as well grounded theoretically as classical
decision theory. One problem is that while local value fioret are interval scales, the construction of
positive reciprocal matrices assumes that theyratie scales'’ AHP fails to provide an axiomatic basis
for such a strong assumption. Elicitation of matrix entigealso problematic, since it hard to provide an
exact semantic meaning to the AHP queries. The nine-poaiéss a source of further controversy. If
level 1 of an attribute is absolutely preferred to level 2] &vel 2 is absolutely preferred to level 3, then
the ratio of level 1 and level 3 should Bex 9 = 81. However, the scale allows only numbers from 1
to 9. Finally, AHP violates the principle of independencercélevant alternatives (i.e., the principle that
ranking between two alternatives should be independerthefr @available alternatives).

4.6 Preference elicitation in Al

4.6.1 Minimax regret approach

"Incremental Utility Elicitation with the Minimax Regret &ision Criterion” [Wang and Boutilier, 2003]

“Cooperative Negotiation in Autonomic Systems using Inoeatal Utility Elicitation” [Boutilier et al., 2003a]
“New Approaches to Optimization and Utility Elicitation Autonomic Computing” [Patrascu et al., 2005]

"Constraint-based Optimization with the Minimax DecisiOriterion” [Boutilier et al., 2003b]
“Regret-based Utility Elicitation in Constraint-baseddison Problems” [Boutilier et al., 2005]

15Ceteris paribuswith respect to remaining attribute values should ceryaial assumed, although such issues, and many other, are
often skirted in AHP literature.

16Among the main reasons for AHP popularity is the relativepicity of elicitation queries: to obtain a total ranking wiultiat-
tribute alternatives, a user is only asked to provide a tpiaé comparison betweqgairs of attributes.

17Functions on a ratio scale are unique up to positive scaling.
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Minimax regret criterion can be used both for making robestisions under strict uncertainty and for
driving an elicitation process. Contrary to the method$previous section, the quality (difference from
optimal) of a minimax regret optimal decision can be boundeese bounds can be tightened with further
elicitation effort. Minimax regret methods have been aggplio several areas of Al, including auctions
[Wang and Boutilier, 2003], autonomic computing [Boutil&t al., 2003a, Patrascu et al., 2005], combi-
natorial auctions [Boutilier et al., 2004b], and consteairtonfiguration problems [Boutilier et al., 2003b,
2005].

Wang and Boutilier [2003] consider a simple problem with & dlatcome space and binary standard
gamble queries. A response to a query results in a new dedgisation with a new level of minimax
regret. The (myopic) value of a query is a function of resgoveues. The authors consider three ways
of combining response values: maximin improvement (séfectjuery with the best worst-case response),
average improvement (select the query with the maximumeaeeimprovement), and expected improve-
ment (select the best query based on improvements weigkteeebikelihood of responses). It turns out
that the expected improvement criterion, combining a Bayeguery selection strategy and a robust min-
imax regret decision criterion, performs best experimignéand is not subject to stalling — the situation
when no query improves the minimax regret level. Using hirslandard gamble queries, the querying
strategy can be optimized analytically.

Boutilier et al. [2003b] address the problem of choosinglibst configuration from the set of feasible
configurations encoded by hard constraints. It is assunagtleferences over configurations can be rep-
resented by a GAI utility function; however, this functi@imprecisely specified by bounds on GAl subu-
tility function values. The authors propose the use of mamegret as a suitable decision criterion and
investigate several algorithms based on mixed integeatipeogramming to compute regret-optimizing
solutions efficiently.

In [Boutilier et al., 2005], the authors concentrate on tlilityielicitation aspect and provide an em-
pirical comparison of minimax regret reduction stratedgre&Al utility models, where uncertainty over
utilities is expressed by bounds on local factor values. dljective is to refine utility uncertainty and
reduce minimax regret with as few queries as possible. Teei@giareboundqueries: the user is asked
whether a specific local utility parameter lies above a aeralue. A positive response raises the lower
bound, while a negative response lowers the upper boundozh $ubutility value.

The halve largest gagHLG) elicitation strategy recommends a query at the midpof the bound
interval of the GAI factor setting with the largest gap betweipper and lower bounds. HLG uniformly
reduces uncertainty over the entire utility space and fhezgrovides the best theoretical minimax regret
reduction guarantees. It is related to polyhedral methwith (ectangular polytopes) in conjoint analysis
which attempt to maximally reduce uncertainty with eachrguAnother,current solution(CS), strategy,
uses heuristics to focus amlevantparts of the utility space and works better in practice. A&sen
two special outcomes that are directly involved in caldntathe regret levelx*, the minimax optimal
configuration, anc®, thewitnesspoint that maximizes the regret &f. The CS strategy considers only
local factor settings that are part of these two specialauts and asks about the one with the largest gap.
A few other heuristic strategies are also tested in experise

The minimax regret criterion can also be applied to a corepleatifferent domain of autonomic com-
puting [Boutilier et al., 2003a, Patrascu et al., 2005]. dtves the problem of optimal resource allocation
one needs to know the utility of different levels of resouapplied to the distributed computing elements.
Unfortunately, even a single evaluation of the utility ftina is very costly. Patrascu et al. [2005] investi-
gate how to sample a monotonic non-decreasing utility fonawith a continuous unidimensional domain
using strategies similar to CS and HLG.
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4.6.2 Bayesian approach

"Utilities as Random Variables: Density Estimation andugture Discovery” [Chajewska and Koller, 2000]
"Making Rational Decisions Using Adaptive Utility Elicitian” [Chajewska et al., 2000]

"A POMDP Formulation of Preference Elicitation ProblemBbjutilier, 2002]

“Local Utility Elicitation in GAI Models” [Braziunas and Batilier, 2005]

If uncertainty about utility functions can be quantified Ipabilistically, then one can design preference
elicitation strategies that optimally balance the trafibefween elicitation effort and the impact of infor-
mation on the decision quality. Until recently, this apprio&as been explored very little. In this section,
we take a look at some of the attempts to solve this problemlbrggearchers.

Myopic EVOIl  The work of [Chajewska et al., 2000] was arguably the firsttogd a consistent Bayesian
view of the preference elicitation problem. If the utilityrfction is not fully known, it is treated as a random
variable drawn from the prior distribution [Chajewska andll&r, 2000]. The value of a decision in an
uncertain situation is computed by taking an expectatiar all possible utility functions. Furthermore,
the value of a query is simply its expected value of inforoati

The proposed framework leads to a simple elicitation atbori At each step, the query with the
highest EVOI is asked, and the distribution over utilitiesipdated based on user responses. The process
stops when the expected value of a decision meets some tgiomeriteria. Because the sequential EVOI
(which takes into consideration all possible future questiand answers) is hard to compute, the value of
a query is approximated by tmeyopicEVOI (see Eq. 28).

In the prenatal diagnosis decision model described in themp¢éhe outcome space of sizés discrete
and unstructured (flat). Therefore, the space of all utilityctions can be represented byradimensional
unit hypercube. A multivariate Gaussian distribution {fiesed to [0;1]) is used to model the prior over
utilities. After a binary standard gamble query (“Is utilibf outcomex greater thap?”), the resulting
posterior becomes a truncated Gaussian, which isdperoximatedy a new multivariate Gaussian dis-
tribution. Experimental results on the domain with 108 outes show that very few queries are needed to
reduce the expected utility loss below a small threshold.

Braziunas and Boutilier [2005] also adopt a myopic apprdaathoosing the next query in eliciting
parameters of GAl models. In this case, EVOI computatioralifated by the additive structure of
GAI utilities. The uncertainty over utilities is quantifieih independent priors over local value function
parameters. In such a case, an appropriate form of querg Is¢al utility of suboutcome; greater than
[?". Such queries arecal queries, because they ask a user to focus on preferences (uarally small)
subset of attributes; the values of remaining attributesatdave to be considered. The authors show that
the best myopic query can be computed analytically if thergriformation over local utility parameters
is specified as a mixture of uniform distributions [Boutili2002]. Such mixtures fit nicely with the type
of queries that result in axis-parallel density “slicesfchuse the posterior distribution after a response to
a query remains a mixture of uniforms. It is therefore pdssib maintain an exact density over utility
parameters throughout the elicitation process.

Preference elicitation as a POMDP To overcome the shortcomings of myopic EVOI approaches, the
preference elicitation problem can be modeled as a POMDRit[lRzy, 2002]. The state space of the
preference elicitation POMDP is the set of possible utfiityctionsU; actions can be either queries about
a user’s utility function@ or terminal decisions; observation space is the set of plessésponses to
gueriesR. The dynamics of the system is simplified by the fact that theegransition function is trivial:
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the underlying utility functions never change throughdw interaction process; the observation function
is the response model which maintains a probability distidm of a particular response to a given query
for a specific utility function; and, the reward function gilyassigns costs to queries and expected utilities
to final decisions.

Solving the preference elicitation POMDP is a difficult task realistic situations, the state space is
continuous and multi-dimensional, so standard methodsdtuing finite-state POMDPs are no longer
applicable. Boutilier [2002] presents a value-iterati@séd method that exploits the special structure
inherent in the preference elicitation process to deal wittameterized belief states over the continuous
state space; belief states are represented by truncatesgi@awr uniform mixture models. With standard
gamble comparison queries that “slice” the density vellfiqals utility of outcome x greater tham?),
updated distributions remain conjugate to the prior. Thé&/P® is solved by approximating the value
function using asynchronous value iteration.

The preference POMDP can also be solved using policy-bas#tbas. Braziunas and Boutilier [2004]
describe an algorithm BBSLS that performs stochastic Ieeatch in the space of finite state policy con-
trollers. In the case of continuous utility functions, itpessible tosamplea number of states (utility
functions) at each step, and calculate the observation emdrd functions for the sampled states. The
results for a very small preference elicitation problemnmfri@outilier, 2002] provide the proof-of-concept
verification of the policy-based approach. There is a lobofn for future research in this area as POMDP-
based methods so far can only solve unrealistically smablpms.
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